We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an $n$-vertex graph $G$ with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter $\epsilon$, achieves approximation factor $(\log\log n)^{2^{O(1/\epsilon^3)}}$, and has amortized update time $O(n^{\epsilon}\log L)$ per operation, where $L$ is the ratio of longest to shortest edge length. Query time for distance-query is $O(2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$, and query time for shortest-path query is $O(|E(P)|+2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$, where $P$ is the path that the algorithm returns. To the best of our knowledge, even allowing any $o(n)$-approximation factor, no adaptive-update algorithms with better than $\Theta(m)$ amortized update time and better than $\Theta(n)$ query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting.


翻译:我们研究了无向加权图上的完全动态全源最短路径问题。给定一张$n$顶点图$G$及其非负边长,随着在线进行的边插入和删除,目标是支持近似距离查询和最短路径查询。我们提供了这个问题的一个确定性算法,对于一个给定的精度参数$\epsilon$,实现了近似因子$(\log\log n)^{2^{O(1/\epsilon^3)}}$,并具有平摊更新时间为$O(n^{\epsilon}\log L)$每个操作,其中$L$是最长到最短边长度的比值。距离查询的查询时间为$O(2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$,最短路径查询的查询时间为$O(|E(P)|+2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$,其中$P$是算法返回的路径。迄今为止,甚至在允许任意小于$n$的近似因子的情况下,还没有比我们的工作更好的自适应更新算法,其摊余更新时间优于$\Theta(m)$但查询时间优于$\Theta(n)$。我们还注意到,我们的保证比自适应对手模型中当前全源最短路径问题的最佳保证还要强。

0
下载
关闭预览

相关内容

最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: * 确定起点的最短路径问题 - 即已知起始结点,求最短路径的问题。适合使用Dijkstra算法。 * 确定终点的最短路径问题 - 与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 * 确定起点终点的最短路径问题 - 即已知起点和终点,求两结点之间的最短路径。 * 全局最短路径问题 - 求图中所有的最短路径。适合使用Floyd-Warshall算法。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法有: * Dijkstra算法 * A*算法 * Bellman-Ford算法 * SPFA算法(Bellman-Ford算法的改进版本) * Floyd-Warshall算法 * Johnson算法 * Bi-Direction BFS算法 這是與数学相關的小作品。你可以通过编辑或修订扩充其内容。
Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
专知会员服务
21+阅读 · 2021年7月28日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
一文汇总超参自动优化方法
极市平台
0+阅读 · 2022年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月5日
Arxiv
0+阅读 · 2023年6月2日
Arxiv
0+阅读 · 2023年6月1日
VIP会员
相关VIP内容
相关资讯
一文汇总超参自动优化方法
极市平台
0+阅读 · 2022年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员