We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an $n$-vertex graph $G$ with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter $\epsilon$, achieves approximation factor $(\log\log n)^{2^{O(1/\epsilon^3)}}$, and has amortized update time $O(n^{\epsilon}\log L)$ per operation, where $L$ is the ratio of longest to shortest edge length. Query time for distance-query is $O(2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$, and query time for shortest-path query is $O(|E(P)|+2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$, where $P$ is the path that the algorithm returns. To the best of our knowledge, even allowing any $o(n)$-approximation factor, no adaptive-update algorithms with better than $\Theta(m)$ amortized update time and better than $\Theta(n)$ query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting.
翻译:我们研究了无向加权图上的完全动态全源最短路径问题。给定一张$n$顶点图$G$及其非负边长,随着在线进行的边插入和删除,目标是支持近似距离查询和最短路径查询。我们提供了这个问题的一个确定性算法,对于一个给定的精度参数$\epsilon$,实现了近似因子$(\log\log n)^{2^{O(1/\epsilon^3)}}$,并具有平摊更新时间为$O(n^{\epsilon}\log L)$每个操作,其中$L$是最长到最短边长度的比值。距离查询的查询时间为$O(2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$,最短路径查询的查询时间为$O(|E(P)|+2^{O(1/\epsilon)}\cdot \log n\cdot \log\log L)$,其中$P$是算法返回的路径。迄今为止,甚至在允许任意小于$n$的近似因子的情况下,还没有比我们的工作更好的自适应更新算法,其摊余更新时间优于$\Theta(m)$但查询时间优于$\Theta(n)$。我们还注意到,我们的保证比自适应对手模型中当前全源最短路径问题的最佳保证还要强。