In recent years, Large Language Models (LLMs) have emerged as transformative tools across numerous domains, impacting how professionals approach complex analytical tasks. This systematic mapping study comprehensively examines the application of LLMs throughout the Data Science lifecycle. By analyzing relevant papers from Scopus and IEEE databases, we identify and categorize the types of LLMs being applied, the specific stages and tasks of the data science process they address, and the methodological approaches used for their evaluation. Our analysis includes a detailed examination of evaluation metrics employed across studies and systematically documents both positive contributions and limitations of LLMs when applied to data science workflows. This mapping provides researchers and practitioners with a structured understanding of the current landscape, highlighting trends, gaps, and opportunities for future research in this rapidly evolving intersection of LLMs and data science.


翻译:近年来,大语言模型(LLMs)已成为众多领域的变革性工具,深刻影响了专业人员处理复杂分析任务的方式。本系统性图谱研究全面考察了LLMs在整个数据科学生命周期中的应用。通过分析Scopus和IEEE数据库中的相关文献,我们识别并分类了当前应用的LLM类型、它们所针对的数据科学流程的具体阶段与任务,以及用于评估这些模型的方法学途径。我们的分析包含了对各项研究中所采用评估指标的详细考察,并系统性地记录了大语言模型应用于数据科学工作流时所产生的积极贡献与现有局限。本图谱为研究人员与实践者提供了对当前研究格局的结构化理解,突出了这一快速演进的大语言模型与数据科学交叉领域的研究趋势、空白以及未来机遇。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员