In the classic TARGET SET SELECTION problem, we are asked to minimize the number of nodes to activate so that, after the application of a certain propagation process, all nodes of the graph are active. Bazgan and Chopin introduced the opposite problem, named HARMLESS SET, in which they ask to maximise the number of nodes to activate such that not a single additional node is activated. In this paper we investigate how sparsity impacts the tractability of HARMLESS SET. Specifically, we answer two open questions posed by the aforementioned authors, namely a) whether the problem is FPT on planar graphs and b) whether it is FTP parameterised by treewidth. The first question can be answered in the positive using existing meta-theorems on sparse classes, and we further show that HARMLESS SET even admits a polynomial kernel. We then answer the second question in the negative by showing that the problem is W[1]-hard when parametrised by a parameter that upper bounds treewidth.
翻译:在经典的 TARGET SET SET SELECEtion 问题中,我们被要求最大限度地减少要激活的节点数量, 以便在应用某种传播过程后, 图形中的所有节点都是活跃的。 Bazgan 和 Chapin 引入了另一个问题, 名为 HARMLES SET, 他们要求最大化点点数来激活, 这样不会启动任何额外的节点。 在本文中, 我们调查了 聚度 如何影响 HARMLES SET 的可移动性。 具体地说, 我们回答上述作者提出的两个未解答问题, 即 (a) 问题是否在平面图中是 FPT 问题, (b) 问题是否在树枝中是 FTP 参数 。 第一个问题可以使用稀树枝类上的现有元理论解答正数, 我们进一步显示 HARMLES SET 甚至承认一个多圆心圈。 我们然后用否定的第二个问题来回答 : 当问题被树枝条的参数分解时, 问题是 W[ 1]- 硬 。