Kleene Algebra (KA) is the algebra of regular expressions. Central to the study of KA is Kozen's (1994) completeness result, which says that any equivalence valid in the language model of KA follows from the axioms of KA. Also of interest is the finite model property (FMP), which says that false equivalences always have a finite counterexample. Palka (2005) showed that, for KA, the FMP is equivalent to completeness. We provide a unified and elementary proof of both properties. In contrast with earlier completeness proofs, this proof does not rely on minimality or bisimilarity techniques for deterministic automata. Instead, our approach avoids deterministic automata altogether, and uses Antimirov's derivatives and the well-known transition monoid construction. Our results are fully verified in the Coq proof assistant.
翻译:Kleene Algebra (KA) 是常规表达式的代数 。 KA 研究的核心是 KA 的完整结果 Kozen (1994年), 这表明 KA 语言模型中的任何等同性都来自 KA 的轴心。 感兴趣的还有有限模型属性( FMP ), 它说假等值总是有一定的反比。 Palka (2005年) 表明, 对 KA 来说, FMP 等同于 完整 。 我们提供了两种属性的统一和基本证明。 与早期的完整性证明相反, 这一证明并不依赖于确定性自动数据的最低或两样技术。 相反, 我们的方法避免了确定性自动数据, 并使用了 Antimirov 的衍生物和众所周知的过渡性单项构造。 我们的结果在 Coq 验证助理中得到了充分验证 。