Bone age assessment is challenging in clinical practice due to the complicated bone age assessment process. Current automatic bone age assessment methods were designed with rare consideration of the diagnostic logistics and thus may yield certain uninterpretable hidden states and outputs. Consequently, doctors can find it hard to cooperate with such models harmoniously because it is difficult to check the correctness of the model predictions. In this work, we propose a new graph-based deep learning framework for bone age assessment with hand radiographs, called Doctor Imitator (DI). The architecture of DI is designed to learn the diagnostic logistics of doctors using the scoring methods (e.g., the Tanner-Whitehouse method) for bone age assessment. Specifically, the convolutions of DI capture the local features of the anatomical regions of interest (ROIs) on hand radiographs and predict the ROI scores by our proposed Anatomy-based Group Convolution, summing up for bone age prediction. Besides, we develop a novel Dual Graph-based Attention module to compute patient-specific attention for ROI features and context attention for ROI scores. As far as we know, DI is the first automatic bone age assessment framework following the scoring methods without fully supervised hand radiographs. Experiments on hand radiographs with only bone age supervision verify that DI can achieve excellent performance with sparse parameters and provide more interpretability.


翻译:由于骨龄评估程序复杂,骨骨龄评估在临床实践中具有挑战性。目前的自动骨龄评估方法设计时很少考虑诊断后勤,因此可能产生某些无法解释的隐藏状态和产出。因此,医生很难和谐地与这些模型合作,因为很难检查模型预测的正确性。在这项工作中,我们提出了一个新的基于图形的深度学习框架,用于用手语射电图(称为Imitator博士(DI))进行骨龄评估。DI的架构旨在学习医生使用评分方法(例如Tanner-Whitehouse方法)进行骨龄评估的诊断后勤。具体来说,DI的演进反映了手语射线图中感兴趣的解区域(ROIs)的本地特征,并预测了我们提议的基于解剖小组的ROI分数,总结了骨龄预测。此外,我们开发了一个新型的基于图形的注意模块,用于计算ROI的患者特征和背景关注度。据我们所知,DI的演进过程是第一个自动年龄参数的测试,并且只能通过对手心型辐射分析框架进行完全的测试。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
109+阅读 · 2020年3月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月24日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员