Drones will play an essential role in human-machine teaming in future search and rescue (SAR) missions. We present a first prototype that finds people fully autonomously in densely occluded forests. In the course of 17 field experiments conducted over various forest types and under different flying conditions, our drone found 38 out of 42 hidden persons; average precision was 86% for predefined flight paths, while adaptive path planning (where potential findings are double-checked) increased confidence by 15%. Image processing, classification, and dynamic flight-path adaptation are computed onboard in real-time and while flying. Our finding that deep-learning-based person classification is unaffected by sparse and error-prone sampling within one-dimensional synthetic apertures allows flights to be shortened and reduces recording requirements to one-tenth of the number of images needed for sampling using two-dimensional synthetic apertures. The goal of our adaptive path planning is to find people as reliably and quickly as possible, which is essential in time-critical applications, such as SAR. Our drone enables SAR operations in remote areas without stable network coverage, as it transmits to the rescue team only classification results that indicate detections and can thus operate with intermittent minimal-bandwidth connections (e.g., by satellite). Once received, these results can be visually enhanced for interpretation on remote mobile devices.


翻译:无人驾驶飞机将在未来搜索和救援(SAR)任务中,在人力机械团队中发挥重要作用。我们展示了第一个在密密密森林中完全自主地发现人的原型。在对各种森林类型和不同飞行条件下进行的17个实地实验中,我们的无人驾驶飞机发现42个隐蔽人员中有38个;在预先确定的飞行路径中,平均精确度为86%;而适应性路径规划(其潜在发现经过双重检查)将增强信任度提高15%。图像处理、分类和动态飞行路径适应在飞机上实时和飞行时进行。我们发现,基于深层次学习的人分类不受单维合成孔中稀少和易出错取样的影响。我们发现,通过单维合成孔孔径雷达,可以缩短航班,将记录要求减少到使用两维合成孔合成孔径取样所需图像的十分之一。我们适应性路径规划的目标是尽可能可靠和快速地找到人,这对于时间紧迫的应用至关重要,如SAR。我们的无人驾驶飞机使得搜索和救援在偏远地区的作业没有稳定的网络覆盖。我们无法向救援队传送分类结果,因为它只能显示探测结果,并因此可以使用这些遥感装置进行观测。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员