This work shares unexpected findings obtained from the use of the Amazon Mechanical Turk platform as a source of participants for the study of technology adoption. Expressly, of the 564 participants from the United States, 126 (22.34%) failed at least one of three forms of attention check (logic, honesty, and time). We also examined whether characteristics such as gender, age, education, and income affected participant attention. Amongst all characteristics assessed, only prior experience with the technology being studied was found to be related to attentiveness. We conclude this work by reaffirming the need for multiple forms of attention checks to gauge participant attention. Furthermore, we propose that researchers adjust their budgets accordingly to account for the possibility of having to discard responses from participants determined not to be displaying adequate attention.


翻译:这项工作分享了利用亚马逊机械土耳其平台作为研究采用技术的参与者来源的意外结果,美国564名参与者中,有126人(22.34%)明显地未能至少进行三种形式的关注检查(逻辑、诚实和时间),我们还审查了性别、年龄、教育和收入等特征是否影响到参与者的注意,在评估的所有特征中,仅发现以往研究技术的经验与关注有关,我们在结束这项工作时重申有必要进行多种形式的关注检查,以衡量参与者的注意;此外,我们建议研究人员相应调整其预算,以考虑是否必须放弃参与者的答复,确定没有给予足够的注意。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
0+阅读 · 2021年3月12日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员