Accurate long-range forecasting of time series data is an important problem in many sectors, such as energy, healthcare, and finance. In recent years, Generative Adversarial Networks (GAN) have provided a revolutionary approach to many problems. However, the use of GAN to improve long-range time series forecasting remains relatively unexplored. In this paper, we utilize a Conditional Wasserstein GAN (CWGAN) and augment it with an error penalty term, leading to a new generative model which aims to generate high-quality synthetic time series data, called CWGAN-TS. By using such synthetic data, we develop a long-range forecasting approach, called Generative Forecasting (GenF), consisting of three components: (i) CWGAN-TS to generate synthetic data for the next few time steps. (ii) a predictor which makes long-range predictions based on generated and observed data. (iii) an information theoretic clustering (ITC) algorithm to better train the CWGAN-TS and the predictor. Our experimental results on three public datasets demonstrate that GenF significantly outperforms a diverse range of state-of-the-art benchmarks and classical approaches. In most cases, we find a 6% - 12% improvement in predictive performance (mean absolute error) and a 37% reduction in parameters compared to the best performing benchmark. Lastly, we conduct an ablation study to demonstrate the effectiveness of the CWGAN-TS and the ITC algorithm.


翻译:对时间序列数据进行准确的长期预测是许多部门,例如能源、保健和金融等部门的一个重要问题。近年来,General Aversarial Network(GAN)为许多问题提供了革命性的方法。然而,使用GAN改进长距离时间序列预测仍然相对没有探索。在本文中,我们使用一个条件性瓦塞尔斯坦 GAN(CWGAN),并增加一个错误惩罚术语,从而形成一个新的基因化模型,旨在生成高质量的合成时间序列数据,称为CWGAN-TS。我们通过使用这种合成数据,制定了一种长期预测方法,称为Generalizeral Surning(GenF),由三个部分组成:(一) CWGAN-TS,为今后几个时间步骤生成合成数据。(二) 一个预测器,根据生成和观察到的数据作出长期预测。 (三) 信息学分类算算法(IT),以更好地培训CWGAN-TS和预测器。我们在三个公共数据集上的实验结果显示,GEN-WG-Sural Sural Sural-alalal a crual a creal rual-cal a creal a creal-creal a creal a creal destris) 一种我们在12的进度中,我们找到了基准中,我们找到了中发现一个最接近性基准中,一个直算出了一个进度。我们12案例。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
R文本分类之RTextTools
R语言中文社区
4+阅读 · 2018年1月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员