We propose kernel distributionally robust optimization (Kernel DRO) using insights from the robust optimization theory and functional analysis. Our method uses reproducing kernel Hilbert spaces (RKHS) to construct a wide range of convex ambiguity sets, including sets based on integral probability metrics and finite-order moment bounds. This perspective unifies multiple existing robust and stochastic optimization methods. We prove a theorem that generalizes the classical duality in the mathematical problem of moments. Enabled by this theorem, we reformulate the maximization with respect to measures in DRO into the dual program that searches for RKHS functions. Using universal RKHSs, the theorem applies to a broad class of loss functions, lifting common limitations such as polynomial losses and knowledge of the Lipschitz constant. We then establish a connection between DRO and stochastic optimization with expectation constraints. Finally, we propose practical algorithms based on both batch convex solvers and stochastic functional gradient, which apply to general optimization and modern machine learning tasks.
翻译:我们用强力优化理论和功能分析的洞察力提出内核分布强力优化( Kernel DRO) 。 我们的方法是复制内核Hilbert 空间( RKHS), 以构建一系列广泛的Convex 模棱两可, 包括基于整体概率度量和定序瞬间界限的数组。 这个视角统一了多种现有强力和随机力优化方法。 我们证明一个典型的理论, 概括了数学时点的双重问题。 通过这个理论, 我们重新将DRO 措施的最大化应用到搜索 RKHS 函数的双重程序。 使用通用的 RKHS, 该理论适用于广泛的损失功能类别, 提升共同的限制, 如多位损失和利普施茨常数的知识。 我们随后在DRO 和静电力优化之间建立起了一种连接。 最后, 我们基于批量的 convex 溶剂溶剂解剂和随机功能梯度的实用算法, 适用于一般的优化和现代机器学习任务 。