We study two classic variants of block-structured integer programming. Two-stage stochastic programs are integer programs of the form $\{A_i \mathbf{x} + D_i \mathbf{y}_i = \mathbf{b}_i\textrm{ for all }i=1,\ldots,n\}$, where $A_i$ and $D_i$ are bounded-size matrices. On the other hand, $n$-fold programs are integer programs of the form $\{{\sum_{i=1}^n C_i\mathbf{y}_i=\mathbf{a}} \textrm{ and } D_i\mathbf{y}_i=\mathbf{b}_i\textrm{ for all }i=1,\ldots,n\}$, where again $C_i$ and $D_i$ are bounded-size matrices. It is known that solving these kind of programs is fixed-parameter tractable when parameterized by the maximum dimension among the relevant matrices $A_i,C_i,D_i$ and the maximum absolute value of any entry appearing in the constraint matrix. We show that the parameterized tractability results for two-stage stochastic and $n$-fold programs persist even when one allows large entries in the global part of the program. More precisely, we prove that: - The feasibility problem for two-stage stochastic programs is fixed-parameter tractable when parameterized by the dimensions of matrices $A_i,D_i$ and by the maximum absolute value of the entries of matrices $D_i$. That is, we allow matrices $A_i$ to have arbitrarily large entries. - The linear optimization problem for $n$-fold integer programs that are uniform -- all matrices $C_i$ are equal -- is fixed-parameter tractable when parameterized by the dimensions of matrices $C_i$ and $D_i$ and by the maximum absolute value of the entries of matrices $D_i$. That is, we require that $C_i=C$ for all $i=1,\ldots,n$, but we allow $C$ to have arbitrarily large entries. In the second result, the uniformity assumption is necessary; otherwise the problem is $\mathsf{NP}$-hard already when the parameters take constant values. Both our algorithms are weakly polynomial: the running time is measured in the total bitsize of the input.


翻译:暂无翻译

0
下载
关闭预览

相关内容

牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
147+阅读 · 2020年7月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
CVE-2018-7600 - Drupal 7.x 远程代码执行exp
黑客工具箱
14+阅读 · 2018年4月17日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员