Numerical simulation is an essential tool for many applications involving subsurface flow and transport, yet often suffers from computational challenges due to the multi-physics nature, highly non-linear governing equations, inherent parameter uncertainties, and the need for high spatial resolutions to capture multi-scale heterogeneity. We developed CCSNet, a general-purpose deep-learning modeling suite that can act as an alternative to conventional numerical simulators for carbon capture and storage (CCS) problems where CO$_2$ is injected into saline aquifers in 2d-radial systems. CCSNet consists of a sequence of deep learning models producing all the outputs that a numerical simulator typically provides, including saturation distributions, pressure buildup, dry-out, fluid densities, mass balance, solubility trapping, and sweep efficiency. The results are 10$^3$ to 10$^4$ times faster than conventional numerical simulators. As an application of CCSNet illustrating the value of its high computational efficiency, we developed rigorous estimation techniques for the sweep efficiency and solubility trapping.


翻译:数字模拟是涉及地表下流动和运输的许多应用的基本工具,但由于多物理性质、高度非线性治理方程式、内在参数不确定性以及需要高空间分辨率以捕捉多尺度异质性等原因,往往会遇到计算方面的挑战。我们开发了CCSNet,这是一个通用的深层学习模型套件,可以替代常规的碳捕获和储存数字模拟器(CCS)问题,在2D辐射系统中将2美元的二氧化碳注入盐碱含水层。CCSNet由一系列深学习模型组成,产生数字模拟器通常提供的所有产出,包括饱和分布、压力积聚、干燥、流体密度、质量平衡、溶解性捕捉和扫荡效率。结果比常规数字模拟器快10美元至10美元4美元。为了应用CCSNet来说明其高计算效率的价值,我们为清除效率和溶解性陷阱开发了严格的估算技术。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2019年6月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
Deep Learning & Neural Network 免费学习资源【译】
乐享数据DataScientists
5+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
45+阅读 · 2019年12月20日
Arxiv
3+阅读 · 2019年6月5日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员