This article presents a secure key exchange algorithm that exploits reciprocity in wireless channels to share a secret key between two nodes $A$ and $B$. Reciprocity implies that the channel phases in the links $A\rightarrow B$ and $B\rightarrow A$ are the same. A number of such reciprocal phase values are measured at nodes $A$ and $B$, called shared phase values hereafter. Each shared phase value is used to mask points of a Phase Shift Keying (PSK) constellation. Masking is achieved by rotating each PSK constellation with a shared phase value. Rotation of constellation is equivalent to adding phases modulo-$2\pi$, and as the channel phase is uniformly distributed in $[0,2\pi)$, the result of summation conveys zero information about summands. To enlarge the key size over a static or slow fading channel, the Radio Frequency (RF) propagation path is perturbed to create several independent realizations of multi-path fading, each used to share a new phase value. To eavesdrop a phase value shared in this manner, the Eavesdropper (Eve) will always face an under-determined system of linear equations which will not reveal any useful information about its actual solution value. This property is used to establish a secure key between two legitimate users.


翻译:此篇文章展示了一种安全的关键交换算法, 利用无线频道的对等性在两个节点美元和美元之间共享秘密密钥。 互惠意味着连接的频道阶段相同 $A\ rightrow B$和 $B\rightrow A$。 数个对等阶段值测量为节点 $A 美元和 $B$, 以后被称为共享阶段值。 每个共享阶段值都用于掩蔽一个阶段转换键( PSK) 星座的点。 保护是通过每个 PSK 星座旋转一个阶段值来实现的。 星座旋转相当于添加阶段 modulo- 2\pi$, 而由于频道阶段平均分布在 $[10, 2\pi]$ 美元 和 $Brightarrown A, 相加对等相等值的结果是零。 为了在静态或缓慢淡淡化的频道上扩大关键大小, 无线电频率的传播路径被渗透, 以创建几个独立的多路面淡化,, 每个系统都用来共享一个新的阶段值。 在这种方式下存储一个共享一个阶段值, 将永久地显示一个正方程式中, 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
10+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2021年5月19日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
5+阅读 · 2019年8月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年2月2日
Arxiv
0+阅读 · 2022年1月29日
VIP会员
相关VIP内容
相关资讯
已删除
将门创投
5+阅读 · 2019年8月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员