Sixth-generation (6G) networks are envisioned to achieve full-band cognition by jointly utilizing spectrum resources from Frequency Range~1 (FR1) to Frequency Range~3 (FR3, 7--24\,GHz). Realizing this vision faces two challenges. First, physics-based ray tracing (RT), the standard tool for network planning and coverage modeling, becomes computationally prohibitive for multi-band and multi-directional analysis over large areas. Second, current 5G systems rely on inter-frequency measurement gaps for carrier aggregation and beam management, which reduce throughput, increase latency, and scale poorly as bands and beams proliferate. These limitations motivate a data-driven approach to infer high-frequency characteristics from low-frequency observations. This work proposes CommUNext, a unified deep learning framework for cross-band, multi-directional signal strength (SS) prediction. The framework leverages low-frequency coverage data and crowd-aided partial measurements at the target band to generate high-fidelity FR3 predictions. Two complementary architectures are introduced: Full CommUNext, which substitutes costly RT simulations for large-scale offline modeling, and Partial CommUNext, which reconstructs incomplete low-frequency maps to mitigate measurement gaps in real-time operation. Experimental results show that CommUNext delivers accurate and robust high-frequency SS prediction even with sparse supervision, substantially reducing both simulation and measurement overhead.


翻译:第六代(6G)网络旨在通过联合利用从频段范围1(FR1)到频段范围3(FR3,7–24 GHz)的频谱资源,实现全频段认知。实现这一愿景面临两大挑战。首先,基于物理的射线追踪(RT)作为网络规划和覆盖建模的标准工具,在大范围多频段多方向分析中计算成本过高。其次,当前5G系统依赖频间测量间隔进行载波聚合和波束管理,这会降低吞吐量、增加延迟,并随着频段和波束数量增加而难以扩展。这些局限性促使我们采用数据驱动方法,从低频观测中推断高频特性。本研究提出CommUNext,一个用于跨频段多方向信号强度(SS)预测的统一深度学习框架。该框架利用低频覆盖数据和目标频段的众包部分测量,生成高保真的FR3预测。我们引入了两种互补架构:完整版CommUNext,用于替代大规模离线建模中昂贵的RT仿真;部分版CommUNext,通过重构不完整的低频地图来缓解实时操作中的测量间隔问题。实验结果表明,即使在稀疏监督下,CommUNext也能提供准确且稳健的高频SS预测,显著降低了仿真和测量开销。

0
下载
关闭预览

相关内容

【CVPR2024】VidLA: 大规模视频-语言对齐
专知会员服务
20+阅读 · 2024年3月31日
【WWW2024】GraphPro:推荐系统中的图预训练与提示学习
专知会员服务
23+阅读 · 2024年1月26日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【AAAI2021】RSPNet: 相对速度感知的无监督视频表示学习
专知会员服务
19+阅读 · 2021年2月12日
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
iOS如何区分App和SDK内部crash
CocoaChina
11+阅读 · 2019年4月17日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【CVPR2024】VidLA: 大规模视频-语言对齐
专知会员服务
20+阅读 · 2024年3月31日
【WWW2024】GraphPro:推荐系统中的图预训练与提示学习
专知会员服务
23+阅读 · 2024年1月26日
【CVPR2022】EDTER:基于Transformer的边缘检测(CVPR2022)
专知会员服务
33+阅读 · 2022年3月18日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
【AAAI2021】RSPNet: 相对速度感知的无监督视频表示学习
专知会员服务
19+阅读 · 2021年2月12日
相关资讯
使用 Keras Tuner 调节超参数
TensorFlow
15+阅读 · 2020年2月6日
iOS如何区分App和SDK内部crash
CocoaChina
11+阅读 · 2019年4月17日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员