Detecting out-of-context media, such as "mis-captioned" images on Twitter, is a relevant problem, especially in domains of high public significance. In this work we aim to develop defenses against such misinformation for the topics of Climate Change, COVID-19, and Military Vehicles. We first present a large-scale multimodal dataset with over 884k tweets relevant to these topics. Next, we propose a detection method, based on the state-of-the-art CLIP model, that leverages automatically generated hard image-text mismatches. While this approach works well on our automatically constructed out-of-context tweets, we aim to validate its usefulness on data representative of the real world. Thus, we test it on a set of human-generated fakes created by mimicking in-the-wild misinformation. We achieve an 11% detection improvement in a high precision regime over a strong baseline. Finally, we share insights about our best model design and analyze the challenges of this emerging threat.
翻译:检测在Twitter上“误读”图像等文本外媒体是一个相关的问题,特别是在具有重大公众意义的领域。 我们在此工作中力求为气候变化、COVID-19和军用车辆等专题开发防伪防误信息。 我们首先展示了一个大型多式联运数据集,其中含有与这些专题相关的884k条推特。 其次, 我们提议一种基于最先进的CLIP模型的检测方法, 利用该模型自动生成硬图像文本错配。 虽然这一方法对我们自动构建的文本外推信息非常有效,但我们的目标是验证其对真实世界数据代表的有用性。 因此, 我们测试了一套由模拟错误信息产生的人造假象。 我们在一个强大的基线上实现了11%的高度精密的检测机制的改进。 最后, 我们分享了我们最佳模型设计和分析这一新兴威胁挑战的见解。