With the wide penetration of smart robots in multifarious fields, Simultaneous Localization and Mapping (SLAM) technique in robotics has attracted growing attention in the community. Yet collaborating SLAM over multiple robots still remains challenging due to performance contradiction between the intensive graphics computation of SLAM and the limited computing capability of robots. While traditional solutions resort to the powerful cloud servers acting as an external computation provider, we show by real-world measurements that the significant communication overhead in data offloading prevents its practicability to real deployment. To tackle these challenges, this paper promotes the emerging edge computing paradigm into multi-robot SLAM and proposes RecSLAM, a multi-robot laser SLAM system that focuses on accelerating map construction process under the robot-edge-cloud architecture. In contrast to conventional multi-robot SLAM that generates graphic maps on robots and completely merges them on the cloud, RecSLAM develops a hierarchical map fusion technique that directs robots' raw data to edge servers for real-time fusion and then sends to the cloud for global merging. To optimize the overall pipeline, an efficient multi-robot SLAM collaborative processing framework is introduced to adaptively optimize robot-to-edge offloading tailored to heterogeneous edge resource conditions, meanwhile ensuring the workload balancing among the edge servers. Extensive evaluations show RecSLAM can achieve up to 39% processing latency reduction over the state-of-the-art. Besides, a proof-of-concept prototype is developed and deployed in real scenes to demonstrate its effectiveness.
翻译:随着智能机器人广泛渗透到多个不同领域,机器人的同步本地化和绘图技术(SLAM)在多领域广泛渗透,这在社区中引起了越来越多的关注。然而,在多个机器人方面合作SLAM仍然具有挑战性,因为对SLAM的密集图形计算与机器人的有限计算能力之间存在性能矛盾。传统的解决方案是使用强大的云服务器作为外部计算提供者,而我们通过现实世界的测量显示,数据卸载过程中的大量通信间接间接覆盖使其无法真正部署。为了应对这些挑战,本文将新兴的边缘计算模式推广到多机器人SLAM,并提议建立一个多机器人激光SLAM,这是一个多机器人激光SLAM系统,重点是在机器人的高级图形计算和机器人计算能力有限之间加快地图的建设进程。与传统的多机器人SLAM相比,RESLAM开发了一种等级级的地图融合技术,将机器人的原始数据引向边缘服务器,用于实时整合,然后将数据送到云层供全球合并。为了优化总体管道,一个高效的多机器人部署和升级的服务器升级的升级的升级的升级的升级的升级的系统,正在展示一个升级的升级的升级的升级的升级的升级的SLASM-MI-MI-MI-MI-MI-SLM-SLM-SLM-SL-SLM-SL-SL-SL-SL-SL-SL-real-min的升级的升级的升级的升级的升级的升级的升级的升级到升级的升级的升级的升级的升级的升级的升级到升级的升级的升级的升级的升级的升级到升级到升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级的升级到升级到升级的升级的升级的升级的升级的升级的升级到升级的升级的升级的升级的升级的升级的流程。