Amodal perception terms the ability of humans to imagine the entire shapes of occluded objects. This gives humans an advantage to keep track of everything that is going on, especially in crowded situations. Typical perception functions, however, lack amodal perception abilities and are therefore at a disadvantage in situations with occlusions. Complex urban driving scenarios often experience many different types of occlusions and, therefore, amodal perception for automated vehicles is an important task to investigate. In this paper, we consider the task of amodal semantic segmentation and propose a generic way to generate datasets to train amodal semantic segmentation methods. We use this approach to generate an amodal Cityscapes dataset. Moreover, we propose and evaluate a method as baseline on Amodal Cityscapes, showing its applicability for amodal semantic segmentation in automotive environment perception. We provide the means to re-generate this dataset on github.
翻译:现代认知是指人类想象整个隐蔽物体形状的能力。 这使得人类有一个优势来跟踪正在发生的一切, 特别是在拥挤的情况下。 但是,典型的认知功能缺乏现代认知能力,因此在隐蔽的情况下处于劣势。 复杂的城市驱动情景往往经历多种不同类型的隔离,因此,自动车辆的现代认知是调查的一项重要任务。 在本文中,我们考虑了现代语义分割的任务,并提出了一种生成数据元件的通用方法,用于培训现代语义分割方法。 我们用这种方法生成一种现代城市景象数据集。 此外,我们提出并评价一种方法作为现代城市景景景的基线,表明其在汽车环境认知中可适用于现代语义分割。 我们提供了重新生成该数据集在 github 上的工具 。