By providing explanations for users and system designers to facilitate better understanding and decision making, explainable recommendation has been an important research problem. In this paper, we propose Counterfactual Explainable Recommendation (CountER), which takes the insights of counterfactual reasoning from causal inference for explainable recommendation. CountER is able to formulate the complexity and the strength of explanations, and it adopts a counterfactual learning framework to seek simple (low complexity) and effective (high strength) explanations for the model decision. Technically, for each item recommended to each user, CountER formulates a joint optimization problem to generate minimal changes on the item aspects so as to create a counterfactual item, such that the recommendation decision on the counterfactual item is reversed. These altered aspects constitute the explanation of why the original item is recommended. The counterfactual explanation helps both the users for better understanding and the system designers for better model debugging. Another contribution of the work is the evaluation of explainable recommendation, which has been a challenging task. Fortunately, counterfactual explanations are very suitable for standard quantitative evaluation. To measure the explanation quality, we design two types of evaluation metrics, one from user's perspective (i.e. why the user likes the item), and the other from model's perspective (i.e. why the item is recommended by the model). We apply our counterfactual learning algorithm on a black-box recommender system and evaluate the generated explanations on five real-world datasets. Results show that our model generates more accurate and effective explanations than state-of-the-art explainable recommendation models.


翻译:通过向用户和系统设计者提供解释,促进更好地了解和决策,可解释的建议是一个重要的研究问题。在本文件中,我们提出反事实解释建议(CountER),从因果关系推理推理的角度从可解释的建议中得出反事实推理的洞察力。 Cooder能够提出解释的复杂性和强度,并采用反事实学习框架,为示范决定寻求简单(低复杂性)和有效(高强度)的解释。从技术上讲,对于每个用户推荐给每个用户的每个项目,Counter都提出一个联合优化问题,以在项目方面产生最小的变化,从而创建一个反事实项目,从而将反事实解释项目的建议决定逆转。这些改变的方面构成了最初项目被推荐的原因。反事实解释有助于用户更好地了解模型的复杂程度和系统设计者更好的模型调控。工作的另一个贡献是评价可解释的黑人建议,这是一项具有挑战性的任务。幸运的是,反事实解释非常适合标准的数量评估。衡量解释质量,我们设计两种解释性决定,我们设计了两种类型的评估模式,一个用户数据视角,另一个是解释。我们从用户的角度看,我们从一个角度,另一个是解释。我们从数据的角度,另一个是解释。(我们从评估项目,从数据的角度,从一个数据的角度,从另一个数据的角度,从一个是解释。从一个数据,从一个角度,从另一个数据,从一个角度,从一个角度,从一个角度,从一个角度,从另一个数据,从一个角度,从一个角度,从另一个数据,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从一个角度,从另一个数据,从一个角度,从一个角度,从一个角度,一个角度,一个角度,从一个角度,一个角度,一个角度,从另一个数据,一个角度,一个角度,一个角度,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,一个,

3
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年11月17日
【CIKM2020】推荐系统的神经模板解释生成
专知会员服务
33+阅读 · 2020年9月9日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
KDD2020推荐系统论文聚焦
机器学习与推荐算法
15+阅读 · 2020年6月28日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
LibRec 精选:推荐系统9个必备数据集
LibRec智能推荐
6+阅读 · 2018年3月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年1月31日
VIP会员
Top
微信扫码咨询专知VIP会员