Intelligent reflecting/refracting surface (IRS) has recently emerged as a promising solution to reconfigure wireless propagation environment for enhancing the communication performance. In this paper, we study a new IRS-aided high-mobility communication system by employing the intelligent refracting surface with a high-speed vehicle to aid its passenger's communication with a remote base station (BS). Due to the environment's random scattering and vehicle's high mobility, a rapidly time-varying channel is typically resulted between the static BS and fast-moving IRS/user, which renders the channel estimation for IRS with a large number of elements more challenging. In order to reap the high IRS passive beamforming gain with low channel training overhead, we propose a new and efficient transmission protocol to achieve both IRS channel estimation and refraction optimization for data transmission. Specifically, by exploiting the quasi-static channel between the IRS and user both moving at the same high speed as well as the line-of-sight (LoS) dominant channel between the BS and IRS, the user first estimates the LoS component of the cascaded BS-IRS-user channel, based on which IRS passive refraction is designed to maximize the corresponding IRS-refracted channel gain. Then, the user estimates the resultant IRS-refracted channel as well as the non-IRS-refracted channel for setting an additional common phase shift at all IRS refracting elements so as to align these two channels for maximizing the overall channel gain for data transmission. Simulation results show significant performance improvement of the proposed design as compared to various benchmark schemes. The proposed on-vehicle IRS system is further compared with a baseline scheme of deploying fixed intelligent reflecting surfaces on the roadside to assist high-speed vehicular communications, which achieves significant rate improvement.
翻译:智能反射/折射表面(IRS)最近出现,成为重新配置无线传播环境以提高通信性能的一个大有希望的解决办法。在本文中,我们研究一个新的IRS辅助的高移动性通信系统,通过使用智能回射表面,使用高速车辆,帮助乘客与远程基地站(BS)进行通信。由于环境随机散射和车辆高度机动性,一个快速时间变化的频道通常在静态BS和快速移动的IRS/用户之间产生,这使得IRS频道的频道估计具有大量要素的挑战性更大。为了利用IRS频道和用户之间的准静态通道,为了在BS和IRS之间实现快速移动,用户首次估算IRS被动的频道估计,通过低频道训练,通过高频率培训,我们提出一个新的高效传输协议,以实现IRS频道的估算和对数据传输的优化。具体来说,利用IRS和用户之间的准静态通道,为了在BS和IRS系统之间的直线(LES)主要频道,用户首先估算IS系统对常规流变换的正常电路路段,作为BS系统升级的升级,作为不断显示的系统,不断升级的升级的系统,作为不断升级的升级的系统,这些系统,在不断更新的升级的升级的升级的系统,以显示,不断升级的升级的系统向后显示的进度的系统,以不断升级的进度的系统,以显示的升级的进度压的升级的升级的升级的系统,以不断推进的升级的升级的系统,作为不断推进的系统。