We consider the task of remote state estimation and stabilization of disturbed linear plants via noisy communication channels. In 2007 Matveev and Savkin established a surprising link between this problem and Shannon's theory of zero-error communication. By applying very recent results of computability of the channel reliability function and computability of the zero-error capacity of noisy channels by Boche and Deppe, we analyze if, on the set of linear time-invariant systems paired with a noisy communication channel, it is uniformly decidable by means of a Turing machine whether remote state estimation and stabilization is possible. The answer to this question largely depends on whether the plant is disturbed by random noise or not. Our analysis incorporates scenarios both with and without channel feedback, as well as a weakened form of state estimation and stabilization. In the broadest sense, our results yield a fundamental limit to the capabilities of computer-aided design and autonomous systems, assuming they are based on real-world digital computers.
翻译:我们考虑的是通过噪音通信渠道对受扰动线性植物进行远程国家估计和稳定的任务。 2007年,Matveev和Savkin在这一问题和香农零性通信理论之间建立了令人惊讶的联系。 通过应用Boche和Deppe最近对频道可靠性功能的计算结果和对音频频道零性能力的计算结果,我们分析了在一套线性时间变化系统上,与一个噪音通信频道相配的线性时间变化系统,如果通过图灵机器来对它进行统一裁量,不管是否可能进行远程国家估计和稳定。 这个问题的答案在很大程度上取决于该工厂是否受到随机噪音的干扰。 我们的分析包括了频道反馈和不反馈的情景,以及一种削弱状态估计和稳定的形式。 从最广义的意义上讲,我们的结果对计算机辅助设计和自主系统的能力产生了根本的限制,假设它们以真实世界的数字计算机为基础。