Augmented reality is an emerging technology in many application domains. Among them is the beauty industry, where live virtual try-on of beauty products is of great importance. In this paper, we address the problem of live hair color augmentation. To achieve this goal, hair needs to be segmented quickly and accurately. We show how a modified MobileNet CNN architecture can be used to segment the hair in real-time. Instead of training this network using large amounts of accurate segmentation data, which is difficult to obtain, we use crowd sourced hair segmentation data. While such data is much simpler to obtain, the segmentations there are noisy and coarse. Despite this, we show how our system can produce accurate and fine-detailed hair mattes, while running at over 30 fps on an iPad Pro tablet.
翻译:强化现实是许多应用领域的新兴技术。 其中包括美容产业, 美容产品现场试镜非常重要。 在本文中, 我们解决了发色增强的活性问题。 为了实现这一目标, 需要快速和准确地分割头发。 我们展示了如何使用经过修改的移动网络CNN架构实时分割头发。 我们没有使用大量难以获取的准确分解数据来培训这个网络,而是使用人群的发型分解数据。 虽然这些数据更容易获得,但那里的分解却很吵,粗糙。 尽管如此, 我们展示了我们的系统如何在iPad Propatt上生成准确和精细的发型板, 同时在 iPad Propat 上运行超过 30 ps。