In this paper, we explore machine translation improvement via Generative Adversarial Network (GAN) architecture. We take inspiration from RelGAN, a model for text generation, and NMT-GAN, an adversarial machine translation model, to implement a model that learns to transform awkward, non-fluent English sentences to fluent ones, while only being trained on monolingual corpora. We utilize a parameter $\lambda$ to control the amount of deviation from the input sentence, i.e. a trade-off between keeping the original tokens and modifying it to be more fluent. Our results improved upon phrase-based machine translation in some cases. Especially, GAN with a transformer generator shows some promising results. We suggests some directions for future works to build upon this proof-of-concept.
翻译:在本文中,我们探索了通过创用Aversarial Network (GAN) 架构改进机器翻译的方法。 我们从RelGAN(一个文本生成模型)和NMT-GAN(一个对抗性机器翻译模型)获得灵感,以实施一种模型,学会将尴尬、不流利的英语句子转换为流利的英语句子,而只是接受单语语语语子的训练。我们使用一个参数$\lambda$来控制输入句子的偏差量,即,在保持原始符号和修改使之更加流畅之间权衡利。我们在某些案例中改进了基于语句的机器翻译结果。特别是,GAN与一个变压器生成器的转换器展示了一些有希望的结果。 我们建议了未来工作的一些方向,以这一验证概念为基础发展。