In this paper, we explore machine translation improvement via Generative Adversarial Network (GAN) architecture. We take inspiration from RelGAN, a model for text generation, and NMT-GAN, an adversarial machine translation model, to implement a model that learns to transform awkward, non-fluent English sentences to fluent ones, while only being trained on monolingual corpora. We utilize a parameter $\lambda$ to control the amount of deviation from the input sentence, i.e. a trade-off between keeping the original tokens and modifying it to be more fluent. Our results improved upon phrase-based machine translation in some cases. Especially, GAN with a transformer generator shows some promising results. We suggests some directions for future works to build upon this proof-of-concept.


翻译:在本文中,我们探索了通过创用Aversarial Network (GAN) 架构改进机器翻译的方法。 我们从RelGAN(一个文本生成模型)和NMT-GAN(一个对抗性机器翻译模型)获得灵感,以实施一种模型,学会将尴尬、不流利的英语句子转换为流利的英语句子,而只是接受单语语语语子的训练。我们使用一个参数$\lambda$来控制输入句子的偏差量,即,在保持原始符号和修改使之更加流畅之间权衡利。我们在某些案例中改进了基于语句的机器翻译结果。特别是,GAN与一个变压器生成器的转换器展示了一些有希望的结果。 我们建议了未来工作的一些方向,以这一验证概念为基础发展。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
39+阅读 · 2020年11月20日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Top
微信扫码咨询专知VIP会员