Deep learning achieves remarkable performance on pattern recognition, but can be vulnerable to defects of some important properties such as robustness and security. This tutorial is based on a stream of research conducted since the summer of 2018 at a few UK universities, including the University of Liverpool, University of Oxford, Queen's University Belfast, University of Lancaster, University of Loughborough, and University of Exeter. The research aims to adapt software engineering methods, in particular software testing methods, to work with machine learning models. Software testing techniques have been successful in identifying software bugs, and helping software developers in validating the software they design and implement. It is for this reason that a few software testing techniques -- such as the MC/DC coverage metric -- have been mandated in industrial standards for safety critical systems, including the ISO26262 for automotive systems and the RTCA DO-178B/C for avionics systems. However, these techniques cannot be directly applied to machine learning models, because the latter are drastically different from traditional software, and their design follows a completely different development life-cycle. As the outcome of this thread of research, the team has developed a series of methods that adapt the software testing techniques to work with a few classes of machine learning models. The latter notably include convolutional neural networks, recurrent neural networks, and random forest. The tools developed from this research are now collected, and publicly released, in a GitHub repository: \url{https://github.com/TrustAI/DeepConcolic}, with the BSD 3-Clause licence. This tutorial is to go through the major functionalities of the tools with a few running examples, to exhibit how the developed techniques work, what the results are, and how to interpret them.


翻译:深层次的学习在模式识别方面取得了显著的成绩,但可能容易受到某些重要属性(如稳健和安全)的缺陷的损害。这种辅导是根据2018年夏天以来在联合王国一些大学,包括利物浦大学、牛津大学、贝尔法斯特皇后大学、兰开斯特尔大学、洛夫堡大学和埃克特尔大学等几所大学进行的一系列研究。研究的目的是将软件工程方法,特别是软件测试方法,与机器学习模型相配合。软件测试技术成功地识别了软件错误,并帮助软件开发者验证了它们设计和实施的软件。正是因为这个原因,一些软件测试技术 -- -- 如MC/DC覆盖度标准 -- -- 已被授权用于安全关键系统的工业标准,包括汽车系统的ISO262626262, 以及航空系统RTCA D-178B/C。然而,这些技术无法直接应用于机器学习模型,因为后者与传统软件有很大差异,而且它们的设计遵循完全不同的发展生命周期。由于这一研究的轨迹是这个核心技术,因此,该团队已经开发了一个用于不断学习的实验室系列。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
专知会员服务
123+阅读 · 2020年9月8日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Arxiv
0+阅读 · 2021年10月1日
Deep Learning for Energy Markets
Arxiv
10+阅读 · 2019年4月10日
VIP会员
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
Top
微信扫码咨询专知VIP会员