This paper gives a practical tutorial on popular causal structure learning models with examples of real-world data to help healthcare audiences understand and apply them. We review prominent traditional, score-based and machine-learning based schemes for causal structure discovery, study some of their performance over some benchmark datasets, and discuss some of the applications to biomedicine. In the case of sufficient data, machine learning-based approaches can be scalable, can include a greater number of variables than traditional approaches, and can potentially be applied in many biomedical applications.
翻译:本文就流行因果结构学习模式提供了实用的辅导,并举例说明了真实世界的数据,以帮助保健受众理解和应用这些数据。 我们审视了以因果结构发现为主的突出的传统、基于分数和基于机器学习的计划,研究了其中一些计划在某些基准数据集上的绩效,并讨论了生物医学的一些应用。 如果数据充足,基于机器学习的方法可以缩放,可以包括比传统方法更多的变量,并有可能在许多生物医学应用中应用。