Stern's diatomic sequence is a well-studied and simply defined sequence with many fascinating characteristics. The binary signed-digit (BSD) representation of integers is used widely in efficient computation, coding theory and other applications. We link these two objects, showing that the number of $i$-bit binary signed-digit representations of an integer $n<2^i$ is the $(2^i-n)^\text{th}$ element in Stern's diatomic sequence. This correspondence makes the vast range of results known about the Stern diatomic sequence available for consideration in the study of binary signed-digit integers, and vice versa. Applications of this relationship discussed in this paper include a weight-distribution theorem for BSD representations, linking these representations to Stern polynomials, a recursion for the number of optimal BSD representations of an integer along with their Hamming weight, stemming from an easy recursion for the leading coefficients and degrees of Stern polynomials, and the identification of all integers having a maximal number of such representations.
翻译:Stern 的 Diatomic 序列是一个经过仔细研究的简单定义的序列,具有许多令人着迷的特性。 二进制数字表示数(BSD)表示数(BSD)在高效计算、编码理论和其他应用中被广泛使用。我们将这两个对象连接起来,显示整数 < 2 ⁇ $的美元-bit 二进制数字表示数数是 Stern 的二进制序列中的 $( 2 ⁇ i-n) ⁇ text{th} 元素。此通信提供了在二进制数字表示数研究中可供考虑的关于Stern ditologic 序列的广泛结果, 反之亦然。 本文讨论的这一关系的应用包括一个用于 BSD 表示数的加权分布符, 将这些表示数与 Stern 多边面表示数联系起来, 将最佳的 BSD 表示数与其 Hamming 重量的重重相重复, 来源于斯特恩 多边nomial 的主要系数和 度的简单递归,, 以及所有表示数最大。