This study presents a rigid-deformation decomposition framework for vehicle collision dynamics that mitigates the spectral bias of implicit neural representations, that is, coordinate-based neural networks that directly map spatio-temporal coordinates to physical fields. We introduce a hierarchical architecture that decouples global rigid-body motion from local deformation using two scale-specific networks, denoted as RigidNet and DeformationNet. To enforce kinematic separation between the two components, we adopt a frozen-anchor training strategy combined with a quaternion-incremental scheme. This strategy alleviates the kinematic instability observed in joint training and yields a 29.8% reduction in rigid-body motion error compared with conventional direct prediction schemes. The stable rigid-body anchor improves the resolution of high-frequency structural buckling, which leads to a 17.2% reduction in the total interpolation error. Loss landscape analysis indicates that the decomposition smooths the optimization surface, which enhances robustness to distribution shifts in angular extrapolation and yields a 46.6% reduction in error. To assess physical validity beyond numerical accuracy, we benchmark the decomposed components against an oracle model that represents an upper bound on performance. The proposed framework recovers 92% of the directional correlation between rigid and deformation components and 96% of the spatial deformation localization accuracy relative to the oracle, while tracking the temporal energy dynamics with an 8 ms delay. These results demonstrate that rigid-deformation decomposition enables accurate and physically interpretable predictions for nonlinear collision dynamics.
翻译:本研究提出了一种用于车辆碰撞动力学的刚体-变形分解框架,旨在缓解隐式神经表示(即基于坐标的神经网络,直接将时空坐标映射到物理场)的频谱偏差。我们引入了一种分层架构,通过两个尺度特定的网络(分别称为RigidNet和DeformationNet)将全局刚体运动与局部变形解耦。为强制两个分量之间的运动学分离,我们采用了一种冻结锚点训练策略,并结合四元数增量方案。该策略缓解了联合训练中观察到的运动学不稳定性,与传统的直接预测方案相比,刚体运动误差减少了29.8%。稳定的刚体锚点提高了高频结构屈曲的分辨率,从而使总插值误差降低了17.2%。损失景观分析表明,分解平滑了优化曲面,增强了对角度外推中分布偏移的鲁棒性,误差减少了46.6%。为评估超出数值精度的物理有效性,我们将分解后的分量与代表性能上限的基准模型(oracle模型)进行对比。所提出的框架恢复了刚体与变形分量之间92%的方向相关性,以及相对于基准模型96%的空间变形定位精度,同时以8毫秒的延迟跟踪了时间能量动态。这些结果表明,刚体-变形分解能够为非线性碰撞动力学提供准确且物理可解释的预测。