In early 2020, the Corona Virus Disease 2019 (COVID-19) pandemic swept the world.In China, COVID-19 has caused severe consequences. Moreover, online rumors during the COVID-19 pandemic increased people's panic about public health and social stability. At present, understanding and curbing the spread of online rumors is an urgent task. Therefore, we analyzed the rumor spreading mechanism and propose a method to quantify a rumors' influence by the speed of new insiders. The search frequency of the rumor is used as an observation variable of new insiders. The peak coefficient and the attenuation coefficient are calculated for the search frequency, which conforms to the exponential distribution. We designed several rumor features and used the above two coefficients as predictable labels. A 5-fold cross-validation experiment using the mean square error (MSE) as the loss function showed that the decision tree was suitable for predicting the peak coefficient, and the linear regression model was ideal for predicting the attenuation coefficient. Our feature analysis showed that precursor features were the most important for the outbreak coefficient, while location information and rumor entity information were the most important for the attenuation coefficient. Meanwhile, features that were conducive to the outbreak were usually harmful to the continued spread of rumors. At the same time, anxiety was a crucial rumor causing factor. Finally, we discuss how to use deep learning technology to reduce the forecast loss by using the Bidirectional Encoder Representations from Transformers (BERT) model.


翻译:2020年初,科罗纳病毒疾病2019(COVID-19)大流行席卷了全世界。在中国,COVID-19(COVID-19)大流行造成了严重后果。此外,COVID-19大流行期间的在线传闻增加了人们对公众健康和社会稳定的恐慌。目前,理解和遏制网上传闻的扩散是一项紧迫的任务。因此,我们分析了传闻传播机制,并提出了一种方法,用新内幕者的速度来量化传闻的影响。传闻的搜索频率被用作新的内幕者的观察变量。在中国,COVID-19(COVID-19)大流行期间的峰值系数和衰减系数是用来计算与指数分布相符合的搜索频率的。此外,我们设计了一些传闻特征,并使用以上两个系数作为可预测的标签。目前,使用平均平方错误(MSE)进行5倍的交叉校验试验表明,决策树适合预测峰值系数,而线性回归模型是预测衰减系数的理想方法。我们的特征分析表明,前体特征对于爆发系数最为重要,而定位和传言实体信息则是使用最重要的时间指标,我们最终使用有害性流传说。同时使用B的传路系数。 继续使用。在B期间,我们学习周期的传变系数。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年3月7日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
2018年中科院JCR分区发布!
材料科学与工程
3+阅读 · 2018年12月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
3+阅读 · 2017年9月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员