Natural Language Processing (NLP) and Information Retrieval (IR) in the judicial domain is an essential task. With the advent of availability domain-specific data in electronic form and aid of different Artificial intelligence (AI) technologies, automated language processing becomes more comfortable, and hence it becomes feasible for researchers and developers to provide various automated tools to the legal community to reduce human burden. The Competition on Legal Information Extraction/Entailment (COLIEE-2019) run in association with the International Conference on Artificial Intelligence and Law (ICAIL)-2019 has come up with few challenging tasks. The shared defined four sub-tasks (i.e. Task1, Task2, Task3 and Task4), which will be able to provide few automated systems to the judicial system. The paper presents our working note on the experiments carried out as a part of our participation in all the sub-tasks defined in this shared task. We make use of different Information Retrieval(IR) and deep learning based approaches to tackle these problems. We obtain encouraging results in all these four sub-tasks.


翻译:司法领域的自然语言处理(NLP)和信息检索(IR)是一项基本任务,随着以电子形式提供的具体领域数据和不同人工智能(AI)技术的帮助的出现,自动语言处理变得更加舒适,因此研究人员和开发商可以向法律界提供各种自动化工具,以减轻人类负担。法律信息提取/销售竞争(COLIEE-2019)与人造情报和法律国际会议(ICAIL)合作,在2019年的人工智能和法律会议(ICAIL)下,产生了很少具有挑战性的任务。共有的四种界定的子任务(即任务1、任务2、任务3和任务4),这四个子任务将能够为司法系统提供少量自动化系统。本文介绍了我们作为我们参与这一共同任务中界定的所有子任务的一部分所进行的实验工作说明。我们利用不同的信息检索和深层次学习方法来解决这些问题。我们在所有这四个子任务中都取得了令人鼓舞的成果。

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
124+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
A Statutory Article Retrieval Dataset in French
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
4+阅读 · 2019年2月18日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2012年11月20日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | AAAI 2019等国际会议信息7条
Call4Papers
5+阅读 · 2018年9月3日
人工智能类 | 国际会议/SCI期刊专刊信息9条
Call4Papers
4+阅读 · 2018年7月10日
人工智能 | 国际会议截稿信息5条
Call4Papers
6+阅读 · 2017年11月22日
相关论文
A Statutory Article Retrieval Dataset in French
Arxiv
0+阅读 · 2021年8月26日
Arxiv
0+阅读 · 2021年8月23日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
12+阅读 · 2020年6月20日
Arxiv
4+阅读 · 2019年2月18日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
3+阅读 · 2012年11月20日
Top
微信扫码咨询专知VIP会员