KNX is one popular communication protocol for a building automation system (BAS). However, its lack of security makes it subject to a variety of attacks. We are the first to study the false data injection attack against a KNX based BAS. We design a man-in-the-middle (MITM) attack to change the data from a temperature sensor and inject false data into the BAS. We model a BAS and analyze the impact of the false data injection attack on the system in terms of energy cost. Since the MITM attack may disturb the KNX traffic, we design a machine learning (ML) based detection strategy to detect the false data injection attack using a novel feature based on the Jensen Shannon Divergence (JSD), which measures the similarity of KNX telegram inter-arrival time distributions with attack and with no attack. We perform real-world experiments and validate the presented false data injection attack and the ML based detection strategy. We also simulate a BAS, and show that the false data injection attack has a huge impact on the BAS in terms of power consumption.
翻译:KNX是建筑自动化系统(BAS)的一种流行通信协议。然而,由于它缺乏安全,它受到各种攻击。我们首先研究对基于KNX的BAS的虚假数据注入攻击。我们设计了一个中继人(MITM)攻击来改变温度传感器的数据并将假数据输入数据输入BAS。我们模拟一个BAS,分析假数据注入攻击对系统在能源成本方面的影响。由于MITM攻击可能干扰KNX的交通,我们设计了一个机器学习(ML)探测战略,以便利用基于Jensen Shann divergence(JSD)的新特征来探测虚假数据注入攻击,该特征用来测量KNX电报中继时间的类似性,以攻击和无攻击的方式测量。我们进行真实世界实验,并验证所提出的假数据注入攻击和以ML为基础的探测战略。我们还模拟了BAS,并表明假数据注入攻击在电力消耗方面对BAS产生巨大影响。