This paper presents a new state-of-the-art algorithm for exact $3\times3$ matrix multiplication over general non-commutative rings, achieving a rank-23 scheme with only 58 scalar additions. This improves the previous best additive complexity of 60 additions without a change of basis. The result was discovered through an automated search combining ternary-restricted flip-graph exploration with greedy intersection reduction for common subexpression elimination. The resulting scheme uses only coefficients from $\{-1, 0, 1\}$, ensuring both efficiency and portability across arbitrary fields. The total scalar operation count is reduced from 83 to 81.
翻译:本文提出了一种在通用非交换环上精确计算$3\times3$矩阵乘法的最新算法,该算法仅需58次标量加法即可实现秩23的计算方案。这一结果在不改变基的情况下,将先前最佳的加法复杂度从60次提升至58次。该算法是通过结合三元限制翻转图探索与针对公共子表达式消除的贪心交集约简的自动化搜索发现的。所得方案仅使用$\{-1, 0, 1\}$范围内的系数,确保了算法在任意域上的高效性与可移植性。标量运算总次数从83次降低至81次。