This paper introduces the natural generalisation of necklaces to the multidimensional setting -- multidimensional necklaces. One-dimensional necklaces are known as cyclic words, two-dimensional necklaces correspond to toroidal codes, and necklaces of dimension three can represent periodic motives in crystals. Our central results are two approximation algorithms for the k-Centre selection problem, where the task is to find k uniformly spaced objects within a set of necklaces. We show that it is NP-hard to verify a solution to this problem even in the one dimensional setting. This strong negative result is complimented with two polynomial-time approximation algorithms. In one dimension we provide a 1 + f(k,N) approximation algorithm where f(k,N) = (log_q(k N))/(N-log_q(kN)) - (log^2_q(kN))/(2N(N-log_q(kN))). For two dimensions we give a 1 + g(k,N) approximation algorithm where g(k,N) = (log_q(k N))/(N-log_q(kN)) - (log^2_q(k))/(2N(N-log_q(kN))). In both cases N is the size of the necklaces and $q$ the size of the alphabet. Alongside our results for these new problems, we also provide the first polynomial time algorithms for counting, generating, ranking and unranking multidimensional necklaces.
翻译:本文将项链的自然概括化引入多维设置 -- -- 多层面项链。 一维项链被称为循环单词,二维项链与近似代码相对称,而三维项链可以在晶体中代表周期性动机。 我们的中心结果为 k- Centre 选择问题的两个近似算法, 任务在于在一组项链中找到 k 统一的空格对象。 我们显示, 即使在一维设置中, 也很难验证这一问题的解决方案。 这种强烈的负结果由两个多元时近似算法来补充。 在一维中, 我们提供 1+ f( k) f, N) f( k) = (log_q( k N)) / ( log_q( kN) ) (log_q( kN)) ) 选择问题 。 ( log_ 2N( N- log_ q( k) ) ) / ( 2N( log_ q) ) 。 对于两个维值, 我们提供 1+ g( k, N- n) yal- lex_ N) lex_ talum) 和这些 tral_ tal_ talbs subs.