Understanding holistic impact of planned transportation solutions and interventions on urban systems is challenged by their complexity but critical for decision making. The cornerstone for such impact assessments is estimating the transportation mode-shift resulting from the intervention. And while transportation planning has well-established models for the mode-choice assessment such as the nested multinomial logit model, an individual choice simulation could be better suited for addressing the mode-shift allowing to consistently account for individual preferences. In addition, no model perfectly represents the reality while the available ground truth data on the actual transportation choices needed to infer the model is often incomplete or inconsistent. The present paper addresses those challenges by offering an individual mode-choice and mode-shift simulation model and the Bayesian inference framework. It accounts for uncertainties in the data as well as the model estimate and translates them into uncertainties of the resulting mode-shift and the impacts. The framework is evaluated on the two intervention cases: introducing ride-sharing for-hire-vehicles in NYC as well the recent introduction of the Manhattan Congestion Surcharge. Being successfully evaluated on the cases above, the framework can be used for assessing mode-shift and resulting economic, social and environmental implications for any future urban transportation solutions and policies being considered by decision-makers or transportation companies.


翻译:理解规划的交通解决方案和干预对城市系统的整体影响,其复杂性对理解规划的交通解决方案和干预的整体影响提出了挑战,但对于决策至关重要。这种影响评估的基石是估计干预产生的交通模式变化模式。运输规划有成熟的模式选择评估模式模型,如嵌入式多面逻辑模型,但个人选择模拟可能更适合于解决模式变化模式变化,从而能够一致考虑个人偏好。此外,没有任何模式完美地代表现实,而关于推断模型所需的实际交通选择的现有地面真实数据往往不完整或不一致。本文件通过提供单个模式选择和模式变化模拟模型模型和贝叶西亚推断框架来应对这些挑战。它说明了数据以及模型估计中的不确定性,并将其转化为由此产生的模式变化和影响不确定性。框架对两个干预案例进行了评估:引入纽约州租车共享,以及最近引入的曼哈顿Concess Sucore。对于上述案例进行了成功评估,可以将该框架用于评估模式变化以及由此产生的经济、社会和环境影响,由任何运输公司来考虑。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2020年11月30日
Arxiv
0+阅读 · 2020年11月26日
Arxiv
0+阅读 · 2020年11月25日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员