We introduce a frequency-tunable, two-dimensional non-Abelian control over operation order built from the reduced Burau representation of the braid group $B_3$, specialised at $t=e^{i\omega}$ and unitarized by Squier's Hermitian form. Coupled to two non-commuting qubit unitaries $A,B$, the resulting switch admits a closed expression for the single-shot Helstrom success and a fixed-order ceiling $p_{\rm fixed}^*$, yielding an explicit, analytic witness gap $\Delta(\omega)=p_{\rm switch}(\omega)-p_{\rm fixed}^*$. We prove that $\Delta(\omega)>0$ is achievable, thereby certifying causal non-separability by purely algebraic means, and confirm this behaviour numerically. Conceptually, this furnishes a minimal non-Abelian $B_3$ control for a Gedankenexperiment in anyonic statistics.
翻译:我们提出一种基于辫群$B_3$约化Burau表示的可调频率二维非阿贝尔操作顺序控制方案,该表示在$t=e^{i\omega}$处特化并通过Squier埃尔米特形式幺正化。当耦合两个非对易量子比特幺正操作$A,B$时,所得交换开关可获得单次Helstrom成功率的封闭表达式及固定顺序上限$p_{\rm fixed}^*$,从而产生显式解析的见证间隙$\Delta(\omega)=p_{\rm switch}(\omega)-p_{\rm fixed}^*$。我们证明$\Delta(\omega)>0$是可实现的,由此通过纯代数方法认证了因果非可分性,并通过数值计算验证了该行为。从概念层面,这为任意子统计中的思想实验提供了极简的非阿贝尔$B_3$控制方案。