Virtual Reality (VR) applications require high data rate for a high-quality immersive experience, in addition to low latency to avoid dizziness and motion sickness. One of the key wireless VR challenges is providing seamless connectivity and meeting the stringent latency and bandwidth requirements. This work proposes a proactive wireless VR system that utilizes information about the user's future orientation for proactive scheduling and caching. This is achieved by leveraging deep neural networks to predict users' orientation trained on a real dataset. The 360{\deg} scene is then partitioned using an overlapping viewports scheme so that only portions of the scene covered by the users' perceptive field-of-view are streamed. Furthermore, to minimize the backhaul latency, popular viewports are cached at the edge cloud based on spatial popularity profiles. Through extensive simulations, we show that the proposed system provides significant latency and throughput performance improvement, especially in fluctuating channels and heavy load conditions. The proactive scheduling enabled by the combination of machine learning prediction and the proposed viewport scheme reduces the mean latency by more than 80% while achieving successful delivery rate close to 100%.
翻译:虚拟( VR) 应用程序要求高数据率, 用于高质量的亲近体验, 以及低延迟, 以避免眩晕和运动疾病。 关键的无线 VR 挑战之一是提供无缝连接, 满足严格的悬浮和带宽要求。 这项工作提议建立一个主动的无线 VR 系统, 利用用户未来方向的信息, 进行主动的日程安排和缓存。 这是通过利用深神经网络, 预测在真实数据集上受过训练的用户方向来实现的。 360\deg} 场景随后使用一个重叠的视图门户方案进行分割, 以便只有用户感知场覆盖的场景的一部分才能流出。 此外, 为了最大限度地减少后空透度, 大众浏览会根据空间广度剖面图在边缘云中缓存。 我们通过广泛的模拟, 显示拟议的系统提供了显著的悬浮度和吞吐性性能改进, 特别是在波动的频道和重负载条件下。 通过机学习预测和拟议的浏览计划相结合, 将平均悬浮度减少80%以上。