This is a tutorial and survey paper on Boltzmann Machine (BM), Restricted Boltzmann Machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random field, Gibbs sampling, statistical physics, Ising model, and the Hopfield network. Then, we introduce the structures of BM and RBM. The conditional distributions of visible and hidden variables, Gibbs sampling in RBM for generating variables, training BM and RBM by maximum likelihood estimation, and contrastive divergence are explained. Then, we discuss different possible discrete and continuous distributions for the variables. We introduce conditional RBM and how it is trained. Finally, we explain deep belief network as a stack of RBM models. This paper on Boltzmann machines can be useful in various fields including data science, statistics, neural computation, and statistical physics.
翻译:这是一份关于博尔兹曼机器(BM)、限制波尔茨曼机器(RBM)和深海信仰网络(DBN)的辅导和调查文件。我们首先从概率图形模型、Markov随机字段、Gibs取样、统计物理学、Ising模型和Hopfield网络等所需的背景开始。然后,我们介绍BM和成果管理制的结构。可以解释可见和隐藏变量的有条件分布、按最大可能性估计在成果管理制中生成变量的GBS取样、培训BM和成果管理制以及对比性差异。然后,我们讨论变量的不同可能的离散和连续分布。我们引入了有条件的成果管理制及其培训方式。最后,我们将深度信仰网络解释为一组成果管理制模型。关于博尔茨曼机器的论文可以在各个领域有用,包括数据科学、统计、神经计算和统计物理学。