Automatic sleep staging is a critical task in healthcare due to the global prevalence of sleep disorders. This study focuses on single-channel electroencephalography (EEG), a practical and widely available signal for automatic sleep staging. Existing approaches face challenges such as class imbalance, limited receptive-field modeling, and insufficient interpretability. This work proposes a context-aware and interpretable framework for single-channel EEG sleep staging, with particular emphasis on improving detection of the N1 stage. Many prior models operate as black boxes with stacked layers, lacking clearly defined and interpretable feature extraction roles.The proposed model combines compact multi-scale feature extraction with temporal modeling to capture both local and long-range dependencies. To address data imbalance, especially in the N1 stage, classweighted loss functions and data augmentation are applied. EEG signals are segmented into sub-epoch chunks, and final predictions are obtained by averaging softmax probabilities across chunks, enhancing contextual representation and robustness.The proposed framework achieves an overall accuracy of 89.72% and a macro-average F1-score of 85.46%. Notably, it attains an F1- score of 61.7% for the challenging N1 stage, demonstrating a substantial improvement over previous methods on the SleepEDF datasets. These results indicate that the proposed approach effectively improves sleep staging performance while maintaining interpretability and suitability for real-world clinical applications.
翻译:自动睡眠分期对于应对全球普遍存在的睡眠障碍问题具有重要的医疗价值。本研究聚焦于单通道脑电图(EEG)信号,这是一种实用且广泛可用的自动睡眠分期信号。现有方法面临类别不平衡、感受野建模受限以及可解释性不足等挑战。本文提出了一种面向单通道脑电睡眠分期的上下文感知可解释框架,特别强调提升N1睡眠期的检测性能。许多现有模型采用堆叠层结构作为黑箱运行,缺乏清晰定义且可解释的特征提取机制。所提模型将紧凑的多尺度特征提取与时序建模相结合,以同时捕获局部和长程依赖关系。为应对数据不平衡问题(尤其在N1期),采用了类别加权损失函数和数据增强技术。脑电信号被分割为子时段数据块,通过对各数据块的softmax概率进行平均得到最终预测,从而增强上下文表征能力和鲁棒性。该框架在SleepEDF数据集上实现了89.72%的整体准确率和85.46%的宏平均F1分数。特别值得注意的是,在具有挑战性的N1睡眠期获得了61.7%的F1分数,较先前方法有显著提升。这些结果表明,所提方法在保持可解释性和临床实用性的同时,有效提升了睡眠分期性能。