In this paper, we give bounds on the dichromatic number $\vec{\chi}(\Sigma)$ of a surface $\Sigma$, which is the maximum dichromatic number of an oriented graph embeddable on $\Sigma$. We determine the asymptotic behaviour of $\vec{\chi}(\Sigma)$ by showing that there exist constants $a_1$ and $a_2$ such that, $a_1\frac{\sqrt{-c}}{\log(-c)} \leq \vec{\chi}(\Sigma) \leq a_2 \frac{\sqrt{-c}}{\log(-c)} $ for every surface $\Sigma$ with Euler characteristic $c\leq -2$. We then give more explicit bounds for some surfaces with high Euler characteristic. In particular, we show that the dichromatic numbers of the projective plane $\mathbb{N}_1$, the Klein bottle $\mathbb{N}_2$, the torus $\mathbb{S}_1$, and Dyck's surface $\mathbb{N}_3$ are all equal to $3$, and that the dichromatic numbers of the $5$-torus $\mathbb{S}_5$ and the $10$-cross surface $\mathbb{N}_{10}$ are equal to $4$. We also consider the complexity of deciding whether a given digraph or oriented graph embeddable on a fixed surface is $k$-dicolourable. In particular, we show that for any fixed surface, deciding whether a digraph embeddable on this surface is $2$-dicolourable is NP-complete, and that deciding whether a planar oriented graph is $2$-dicolourable is NP-complete unless all planar oriented graphs are $2$-dicolourable (which was conjectured by Neumann-Lara).
翻译:在本文中, 我们给出了 $\ vec_ chi} (Sigma) 的底色值 $\ sigma$ (Sigma) 的底色值 $\ sgma$ (Sigma) 的底色值 $\ sgma$, 这是嵌入 $\ Sgma$ 的向导图形的最大色数 $\ vec_ chi} (Sgma) 美元 。 我们确定 $\ 1 美元 和 $ 2 美元 的默认值, 例如, $ 1\ 1 美元 美元 的底色值 $ (leq pal) 美元 的底色值 $ (Sigma) a_ 2\ flickrq a 美元 美元 的底色值 美元 。 我们显示 美元 美元 美元 和 美元 美元 美元 的底色值 的底色值是 。 美元 美元和 美元 美元 的底值是所有基值 的底值 的底值 。