The severe on-chip memory limitations are currently preventing the deployment of the most accurate Deep Neural Network (DNN) models on tiny MicroController Units (MCUs), even if leveraging an effective 8-bit quantization scheme. To tackle this issue, in this paper we present an automated mixed-precision quantization flow based on the HAQ framework but tailored for the memory and computational characteristics of MCU devices. Specifically, a Reinforcement Learning agent searches for the best uniform quantization levels, among 2, 4, 8 bits, of individual weight and activation tensors, under the tight constraints on RAM and FLASH embedded memory sizes. We conduct an experimental analysis on MobileNetV1, MobileNetV2 and MNasNet models for Imagenet classification. Concerning the quantization policy search, the RL agent selects quantization policies that maximize the memory utilization. Given an MCU-class memory bound of 2MB for weight-only quantization, the compressed models produced by the mixed-precision engine result as accurate as the state-of-the-art solutions quantized with a non-uniform function, which is not tailored for CPUs featuring integer-only arithmetic. This denotes the viability of uniform quantization, required for MCU deployments, for deep weights compression. When also limiting the activation memory budget to 512kB, the best MobileNetV1 model scores up to 68.4% on Imagenet thanks to the found quantization policy, resulting to be 4% more accurate than the other 8-bit networks fitting the same memory constraints.


翻译:严重的芯片内存限制目前阻止了在微小微控制器(MICUs)中部署最准确的深神经网络模型(DNN),即使利用有效的8位位数的量化机制。为了解决这个问题,我们在本文件中根据HAQ框架展示了自动混合精度量化流,但为MCU设备的内存和计算特性定制。具体地说,在对RAM和FLAS嵌入的内存大小的严格限制下,强化学习代理物在2,4,8位数中搜索了个人重量和激活声纳的最精确度。我们对MPMNetV1、MPMNetV2和MNasNet用于图像网分类的模型进行了实验性分析。关于四分解政策搜索,RL代理商选择了最优化记忆利用的量化政策。鉴于MCU-级内存为2MB, 混合精度引擎生成的压缩模型准确度为RAMV的状态溶解度溶解度,其最精确的内嵌化的内存能力为5位数级CU1,其最精确的缩缩缩缩缩的缩缩缩缩缩缩缩缩缩缩缩缩缩缩的CU。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
4+阅读 · 2019年2月8日
HAQ: Hardware-Aware Automated Quantization
Arxiv
6+阅读 · 2018年11月21日
VIP会员
相关VIP内容
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
专知会员服务
60+阅读 · 2020年3月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员