We consider scheduling in the M/G/1 queue with unknown job sizes. It is known that the Gittins policy minimizes mean response time in this setting. However, the behavior of the tail of response time under Gittins is poorly understood, even in the large-response-time limit. Characterizing Gittins's asymptotic tail behavior is important because if Gittins has optimal tail asymptotics, then it simultaneously provides optimal mean response time and good tail performance. In this work, we give the first comprehensive account of Gittins's asymptotic tail behavior. For heavy-tailed job sizes, we find that Gittins always has asymptotically optimal tail. The story for light-tailed job sizes is less clear-cut: Gittins's tail can be optimal, pessimal, or in between. To remedy this, we show that a modification of Gittins avoids pessimal tail behavior while achieving near-optimal mean response time.
翻译:我们考虑在 M/G/1 队列中排队, 工作大小未知。 众所周知, Gittins 政策会在此设置中最大限度地减少响应时间 。 但是, 吉廷斯下响应时间尾部的行为不易理解, 即使在大型响应时间限制下也是如此。 区分吉廷斯的无线尾部行为很重要, 因为如果 Gittins 有最佳尾部无症状, 那么它会同时提供最佳的平均反应时间和良好的尾部表现 。 在这项工作中, 我们给出了吉廷斯无线尾部行为的第一个全面描述 。 对于重尾部行为, 我们发现吉廷斯总是有无线最佳尾部。 轻尾部工作大小的故事不那么清晰: 吉廷斯的尾部可能是最佳的, 小尾部, 或者介于两者之间。 为了纠正这一点, 我们显示, Gittins 的修改会避免小尾部行为, 同时达到接近最佳反应时间 。