Recently, through development of several 3d vision systems, widely used in various applications, medical and biometric fields. Microsoft kinect sensor have been most of used camera among 3d vision systems. Microsoft kinect sensor can obtain depth images of a scene and 3d coordinates of human joints. Thus, anthropometric features can extractable easily. Anthropometric feature and 3d joint coordinate raw datas which captured from kinect sensor is unstable. The strongest reason for this, datas vary by distance between joints of individual and location of kinect sensor. Consequently, usage of this datas without kinect calibration and data optimization does not result in sufficient and healthy. In this study, proposed a novel method to calibrating kinect sensor and optimizing skeleton features. Results indicate that the proposed method is quite effective and worthy of further study in more general scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Kinect for Xbox 360,简称 Kinect,是由微软开发,应用于 Xbox 360 主机的周边设备。它让玩家不需要手持或踩踏控制器,而是使用语音指令或手势来操作 Xbox 360 的系统界面。它也能捕捉玩家全身上下的动作,用身体来进行游戏,带给玩家“免控制器的游戏与娱乐体验”。 2009 年 6 月 1 日微软于 E3 游戏展中公布名为“Project Natal”(诞生计划)的感应器,它能够捕捉使用者的肢体动作,或是进行脸部辨识。感应器也内建麦克风,可以用来识别语音指令。此感应器兼容于所有 Xbox 360 主机,玩家只需新购此感应器就可直接使用。 2010 年的 E3 电玩展,微软宣布 Project Natal 的正式名称为“Kinect”,并预计在 2010 年 11 月 4 日于美国上市,建议售价 149 美金。台湾则在2010 年 11 月 20 日上市。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2023年9月21日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2018年5月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
12+阅读 · 2023年9月21日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
17+阅读 · 2022年2月23日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2018年5月21日
相关基金
国家自然科学基金
11+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
39+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员