COVID-19 is a virus with high transmission rate that demands rapid identification of the infected patients to reduce the spread of the disease. The current gold-standard test, Reverse-Transcription Polymerase Chain Reaction (RT-PCR), has a high rate of false negatives. Diagnosing from CT-scan images as a more accurate alternative has the challenge of distinguishing COVID-19 from other pneumonia diseases. Artificial intelligence can help radiologists and physicians to accelerate the process of diagnosis, increase its accuracy, and measure the severity of the disease. We designed a new interpretable deep neural network to distinguish healthy people, patients with COVID-19, and patients with other pneumonia diseases from axial lung CT-scan images. Our model also detects the infected areas and calculates the percentage of the infected lung volume. We first preprocessed the images to eliminate the batch effects of different devices, and then adopted a weakly supervised method to train the model without having any tags for the infected parts. We trained and evaluated the model on a large dataset of 3359 samples from 6 different medical centers. The model reached sensitivities of 97.75% and 98.15%, and specificities of 87% and 81.03% in separating healthy people from the diseased and COVID-19 from other diseases, respectively. It also demonstrated similar performance for 1435 samples from 6 different medical centers which proves its generalizability. The performance of the model on a large diverse dataset, its generalizability, and interpretability makes it suitable to be used as a reliable diagnostic system.


翻译:COVID-19是一种传染率高的病毒,它要求迅速识别感染者,以减少疾病的传播。目前的金标准测试,即逆序图解聚合酶链反应(RT-PCR),具有很高的假阴性。从CT扫描图像中诊断出作为更准确的替代品,具有将COVID-19与其他肺炎疾病区分开来的挑战。人工智能可以帮助放射师和医生加快诊断过程,提高其准确性,并衡量疾病的诊断程度。我们设计了一个新的可解释的深神经网络,以区分健康的人群、具有COVID-19的患者和其他肺炎疾病的患者,以及非轴肺部CT扫描图像。我们的模型还检测了受感染地区并计算了受感染肺部数量的百分比。我们首先对图像进行了预处理,以消除不同装置的批量效应,然后采用了一种薄弱的监督方法来培训模型,而没有为受感染部分设置任何标签。我们从6个不同的医疗中心对3359个样本的模型进行了培训和评价,使患COVI-19的病人和其他肺部疾病患者的大规模性能和性能分别用于97.75%和98-75其他疾病的特性。

0
下载
关闭预览

相关内容

《可解释的机器学习-interpretable-ml》238页pdf
专知会员服务
202+阅读 · 2020年2月24日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
16+阅读 · 2018年2月7日
VIP会员
相关资讯
【泡泡一分钟】无地图驾驶的深层语义车道分割
泡泡机器人SLAM
3+阅读 · 2019年3月11日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员