Edge computing is an emerging paradigm to enable low-latency applications, like mobile augmented reality, because it takes the computation on processing devices that are closer to the users. On the other hand, the need for highly scalable execution of stateless tasks for cloud systems is driving the definition of new technologies based on serverless computing. In this paper, we propose a novel architecture where the two converge to enable low-latency applications: this is achieved by offloading short-lived stateless tasks from the user terminals to edge nodes. Furthermore, we design a distributed algorithm that tackles the research challenge of selecting the best executor, based on real-time measurements and simple, yet effective, prediction algorithms. Finally, we describe a new performance evaluation framework specifically designed for an accurate assessment of algorithms and protocols in edge computing environments, where the nodes may have very heterogeneous networking and processing capabilities. The proposed framework relies on the use of real components on lightweight virtualization mixed with simulated computation and is well-suited to the analysis of several applications and network environments. Using our framework, we evaluate our proposed architecture and algorithms in small- and large-scale edge computing scenarios, showing that our solution achieves similar or better delay performance than a centralized solution, with far less network utilization.


翻译:电磁计算是一个新兴的范例,可以允许低长度应用,比如移动扩大的现实,因为它在更接近用户的处理装置上进行计算。另一方面,云层系统需要高度可伸缩地执行无国籍任务,这正在驱动基于无服务器计算的新技术定义。在本文中,我们提出了一个新颖的结构,其中两个组合可以促成低长应用:这是通过从用户终端上卸载短寿命的无国籍任务,以边缘节点来达到的。此外,我们设计了一个分布式算法,以解决根据实时测量和简单但有效的预测算法选择最佳执行器的研究挑战。最后,我们描述了一个专门设计的新的业绩评价框架,目的是准确评估边缘计算环境中的算法和协议,而节点可能具有非常不相同的联网和处理能力。拟议框架依赖于使用与模拟计算混合的轻量性虚拟化组合的实际组件,并完全适合对若干应用程序和网络环境的分析。我们利用这个框架,评估了我们在小型和大规模边缘计算模型中拟议的架构和算法,以比远近的中央计算模型更差的计算方法实现更好的业绩。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
105+阅读 · 2020年5月3日
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
43+阅读 · 2019年12月20日
Arxiv
34+阅读 · 2019年11月7日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
计算机类 | 低难度国际会议信息6条
Call4Papers
6+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员