Recently, a new window to explore tweet data has been opened in TExVis tool through visualizing the relations between the frequent keywords. However, timeline exploration of tweet data, not present in TExVis, could play a critical factor in understanding the changes in people's feedback and reaction over time. Targeting this, we present our visual analytics tool, called TEVisE. It uses an enhanced adjacency matrix diagram to overcome the cluttering problem in TExVis and visualizes the evolution of frequent keywords and the relations between these keywords over time. We conducted two user studies to find answers of our two formulated research questions. In the first user study, we focused on evaluating the used visualization layouts in both tools from the perspectives of common usability metrics and cognitive load theory. We found better accuracy in our TEVisE tool for tasks related to reading exploring relations between frequent keywords. In the second study, we collected users' feedback towards exploring the summary view and the new timeline evolution view inside TEVisE. In the second study, we collected users' feedback towards exploring the summary view and the new timeline evolution view inside TEVisE. We found that participants preferred both view, one to get overall glance while the other to get the trends changes over time.
翻译:最近,在TExVis工具中打开了一个探索推特数据的新窗口,通过直观地展示常用关键词之间的关系。然而,TExVis没有出现的TExVis对推特数据进行时间表探索,这在了解人们反馈和反应随时间推移的变化方面可以起到关键作用。为此,我们展示了我们的视觉分析工具,称为TEVisE。它使用一个强化的对称矩阵图,以克服TExVis的紧要问题,并直观地显示常用关键词的演变过程和这些关键词之间的关系。我们进行了两项用户研究,以找到我们两个拟定的研究问题的答案。在第一次用户研究中,我们侧重于从通用的可用度度指标和认知负荷理论的角度评估两种工具中使用的可视化布局。我们发现我们的TEVisE工具在阅读频繁关键词之间关系的任务方面更加准确。在第二项研究中,我们收集了用户的反馈,以探索摘要视图和TEVisE内部新的时间框架演变观点。在第二项研究中,我们收集了用户的反馈,以探讨概要观点和新的时间框架演变观点,在TEVESE中,我们发现,在总体趋势中找到了两种观点,我们更倾向于。