Pancreas segmentation in medical imaging data is of great significance for clinical pancreas diagnostics and treatment. However, the large population variations in the pancreas shape and volume cause enormous segmentation difficulties, even for state-of-the-art algorithms utilizing fully-convolutional neural networks (FCNs). Specifically, pancreas segmentation suffers from the loss of spatial information in 2D methods, and the high computational cost of 3D methods. To alleviate these problems, we propose a probabilistic-map-guided bi-directional recurrent UNet (PBR-UNet) architecture, which fuses intra-slice information and inter-slice probabilistic maps into a local 3D hybrid regularization scheme, which is followed by bi-directional recurrent network optimization. The PBR-UNet method consists of an initial estimation module for efficiently extracting pixel-level probabilistic maps and a primary segmentation module for propagating hybrid information through a 2.5D U-Net architecture. Specifically, local 3D information is inferred by combining an input image with the probabilistic maps of the adjacent slices into multichannel hybrid data, and then hierarchically aggregating the hybrid information of the entire segmentation network. Besides, a bi-directional recurrent optimization mechanism is developed to update the hybrid information in both the forward and the backward directions. This allows the proposed network to make full and optimal use of the local context information. Quantitative and qualitative evaluation was performed on the NIH Pancreas-CT dataset, and our proposed PBR-UNet method achieved better segmentation results with less computational cost compared to other state-of-the-art methods.


翻译:医疗成像数据中的胰腺分解对于临床胰腺诊断和治疗具有重大意义,但对于临床胰腺诊断和治疗而言,医疗成像数据中的骨折分割具有重大意义;然而,由于胰腺形状和体积的大规模人口变化导致巨大的分解困难,即使是利用全面进动神经网络(FCNs),最先进的算算算算算算算器使用完全进进进神经神经神经神经网络(FCNs)网络。具体地说,由于2D方法的空间信息丢失,3D方法计算成本高,对骨髓部分进行分割。为了缓解这些问题,我们建议建立一种由直径制驱动的双向导双向双向双向导双向双向双向导双向导的双向分割医学数据。为了缓解这些问题,我们提议建立一种概率分析模型(PBBR-UN-UN)的双向双向双向双向双向双向双向双向双向双向双向的双向诊断数据,将已执行的内分流信息和间断断断断断的间地图和间断断断断断断断的内环境,将目前、目前将机的内、目前、目前和今后内部的内、目前和下、目前内部的内、目前和下、目前内部的内、今后内部的、目前、目前、目前、目前、目前、目前、目前、目前(目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、目前、

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员