Non-Hermitian systems offer new platforms for unusual physical properties that can be flexibly manipulated by redistribution of the real and imaginary parts of refractive indices, whose presence breaks conventional wave propagation symmetries, leading to asymmetric reflection and symmetric transmission with respect to the wave propagation direction. Here, we use supervised and unsupervised learning techniques for knowledge acquisition in non-Hermitian systems which accelerate the inverse design process. In particular, we construct a deep learning model that relates the transmission and asymmetric reflection in non-conservative settings and proposes sub-manifold learning to recognize non-Hermitian features from transmission spectra. The developed deep learning framework determines the feasibility of a desired spectral response for a given structure and uncovers the role of effective gain-loss parameters to tailor the spectral response. These findings pave the way for intelligent inverse design and shape our understanding of the physical mechanism in general non-Hermitian systems.
翻译:非希腊系统为不寻常的物理特性提供了新的平台,可以通过重新分配折射指数的真实部分和想象部分来灵活地加以操纵,这些反射指数的存在打破了传统的波波传播的对称性,导致波传播方向的反射和对称传输不对称。这里,我们使用监督和不受监督的学习技术,在非希腊系统获取知识,加速反向设计过程。特别是,我们建立了一个深层次学习模型,将非保守环境中的传输和不对称反射联系起来,并提出分层学习建议,以识别传播光谱中的非匈牙利特征。开发的深层学习框架决定了特定结构所需的光谱反应的可行性,并揭示了有效损益参数的作用,以适应光谱反应。这些发现为智能的反向设计铺平准了道路,并塑造了我们对一般非匈牙利系统物理机制的理解。