Property inference attacks reveal statistical properties about a training set but are difficult to distinguish from the primary purposes of statistical machine learning, which is to produce models that capture statistical properties about a distribution. Motivated by Yeom et al.'s membership inference framework, we propose a formal and generic definition of property inference attacks. The proposed notion describes attacks that can distinguish between possible training distributions, extending beyond previous property inference attacks that infer the ratio of a particular type of data in the training data set. In this paper, we show how our definition captures previous property inference attacks as well as a new attack that reveals the average degree of nodes of a training graph and report on experiments giving insight into the potential risks of property inference attacks.


翻译:财产推断攻击揭示了一组培训的统计属性,但很难与统计机学习的主要目的区分开来,后者是生成关于分布统计属性的模型。我们受Yeom等人成员推断框架的驱动,提出了财产推断攻击的正式和通用定义。拟议的概念描述了可以区分可能的培训分布的攻击,超出了以前的财产推断攻击的范围,这些攻击可以推断出培训数据集中特定类型数据的比例。我们在本文件中说明了我们的定义如何捕捉了以前的财产推断攻击以及新的攻击,显示培训图表的平均节点,并报告了实验,以洞察财产推断攻击的潜在风险。

0
下载
关闭预览

相关内容

【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
46+阅读 · 2021年5月10日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Asymptotic Causal Inference
Arxiv
0+阅读 · 2021年9月20日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
46+阅读 · 2021年5月10日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
40+阅读 · 2020年2月10日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
神经网络训练tricks
极市平台
6+阅读 · 2019年4月15日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员