Empirical Bayes (EB) improves the accuracy of simultaneous inference "by learning from the experience of others" (Efron, 2012). Classical EB theory focuses on latent variables that are iid draws from a fitted prior (Efron, 2019). Modern applications, however, feature complex structure, like arrays, spatial processes, or covariates. How can we apply EB ideas to these settings? We propose a generalized approach to empirical Bayes based on the notion of probabilistic symmetry. Our method pairs a simultaneous inference problem-with an unknown prior-to a symmetry assumption on the joint distribution of the latent variables. Each symmetry implies an ergodic decomposition, which we use to derive a corresponding empirical Bayes method. We call this methodBayesian empirical Bayes (BEB). We show how BEB recovers the classical methods of empirical Bayes, which implicitly assume exchangeability. We then use it to extend EB to other probabilistic symmetries: (i) EB matrix recovery for arrays and graphs; (ii) covariate-assisted EB for conditional data; (iii) EB spatial regression under shift invariance. We develop scalable algorithms based on variational inference and neural networks. In simulations, BEB outperforms existing approaches to denoising arrays and spatial data. On real data, we demonstrate BEB by denoising a cancer gene-expression matrix and analyzing spatial air-quality data from New York City.
翻译:经验贝叶斯(Empirical Bayes,EB)通过“从他人经验中学习”(Efron, 2012)提升了同步推断的准确性。经典EB理论聚焦于从拟合先验中独立同分布抽取的隐变量(Efron, 2019)。然而,现代应用场景涉及复杂结构,如阵列、空间过程或协变量。我们如何将EB思想应用于这些场景?本文提出一种基于概率对称性概念的广义经验贝叶斯方法。该方法将同步推断问题(含未知先验)与隐变量联合分布上的对称性假设相结合。每种对称性对应一个遍历分解,我们借此推导出相应的经验贝叶斯方法,称之为贝叶斯经验贝叶斯(Bayesian empirical Bayes,BEB)。我们证明BEB能够恢复经典经验贝叶斯方法(其隐含假设可交换性),进而将其扩展至其他概率对称性:(i)面向阵列与图的EB矩阵恢复;(ii)针对条件数据的协变量辅助EB;(iii)平移不变性下的EB空间回归。我们基于变分推断与神经网络开发了可扩展算法。在模拟实验中,BEB在去噪阵列与空间数据方面优于现有方法。在真实数据中,我们通过去噪癌症基因表达矩阵及分析纽约市空间空气质量数据验证了BEB的有效性。