In Spring 2020, the world moved from traditional classes to what was coined as ERL (Emergency Remote Teaching, Learning, Instruction), posing real challenges to all actors involved, requiring an immediate, unprecedented, and unplanned devising of mitigation strategies. The impacts of this transition cannot, however, be studied only at the educational level, as it consists of a broader social shift with multidomain repercussions. In this paper, we use the CIPP model (Context, Input, Process and Product evaluations) to further investigate interrelations among the context, input and process elements of ERL during the first wave of COVID-19, as the second wave presses towards reconfining. A correlation analysis of 46 variables, based students responses (N=360) to a closed-ended questionnaire shows the crucial importance of motivation and engagement in online classes, as learning enablers or constrainers. These also shape the students perception of the role that online classes play in helping them to stay more positive during ERL.


翻译:2020年春季,世界从传统班级转向所谓的ERL(紧急远程教学、学习、教学),对所有参与者提出了真正的挑战,要求立即、史无前例和无计划地制定缓解战略,但这一转变的影响不能只从教育层面研究,因为这一转变的影响包括更广泛的社会转变,产生多方面的影响。在本文件中,我们利用CIPPP模式(Cextext、Inpulation、Process和产品评价)进一步调查ERL在COVID-19第一波期间的背景、投入和过程要素之间的相互关系,作为第二波重新确定目标的动力。对46个变量的相关分析,基于学生对封闭问卷的答复(N=360)显示在线课程的积极性和参与,作为学习推动因素或约束因素,对于在线课程在帮助学生在ERL期间保持更多积极性方面所发挥的作用也形成了学生的看法。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
6+阅读 · 2017年11月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
已删除
将门创投
6+阅读 · 2017年11月27日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员