Parameter estimation remains a challenging task across many areas of engineering. Because data acquisition can often be costly, limited, or prone to inaccuracies (noise, uncertainty) it is crucial to identify sensor configurations that provide the maximum amount of information about the unknown parameters, in particular for the case of distributed-parameter systems, where spatial variations are important. Physics-Informed Neural Networks (PINNs) have recently emerged as a powerful machine-learning (ML) tool for parameter estimation, particularly in cases with sparse or noisy measurements, overcoming some of the limitations of traditional optimization-based and Bayesian approaches. Despite the widespread use of PINNs for solving inverse problems, relatively little attention has been given to how their performance depends on sensor placement. This study addresses this gap by introducing a comprehensive PINN-based framework that simultaneously tackles optimal sensor placement and parameter estimation. Our approach involves training a PINN model in which the parameters of interest are included as additional inputs. This enables the efficient computation of sensitivity functions through automatic differentiation, which are then used to determine optimal sensor locations exploiting the D-optimality criterion. The framework is validated on two illustrative distributed-parameter reaction-diffusion-advection problems of increasing complexity. The results demonstrate that our PINNs-based methodology consistently achieves higher accuracy compared to parameter values estimated from intuitively or randomly selected sensor positions.
翻译:参数估计在众多工程领域中仍是一项具有挑战性的任务。由于数据采集往往成本高昂、数量有限或易受不准确性(噪声、不确定性)影响,识别能够提供关于未知参数最大信息量的传感器配置至关重要,尤其对于空间变化显著分布的参数系统而言。物理信息神经网络(PINNs)近年来已成为一种强大的机器学习工具,特别适用于稀疏或含噪声测量条件下的参数估计,克服了传统基于优化的方法和贝叶斯方法的某些局限性。尽管PINNs在求解反问题中得到了广泛应用,但其性能如何依赖于传感器布局的问题却鲜有关注。本研究通过提出一个综合性的PINN框架来填补这一空白,该框架同时处理最优传感器布局与参数估计问题。我们的方法涉及训练一个PINN模型,其中目标参数作为附加输入项纳入。这使得通过自动微分高效计算灵敏度函数成为可能,进而利用D最优性准则确定最优传感器位置。该框架在两个复杂度递增的分布参数反应-扩散-平流问题上进行了验证。结果表明,与基于直觉或随机选取传感器位置估计的参数值相比,我们基于PINN的方法始终能获得更高的精度。