One important question in algebraic complexity is understanding the complexity of polynomial ideals (Grochow, Bulletin of EATCS 131, 2020). Andrews and Forbes (STOC 2022) studied the determinantal ideals $I^{\det}_{n,m,r}$ generated by the $r\times r$ minors of $n\times m$ matrices. Over fields of characteristic zero or of sufficiently large characteristic, they showed that for any nonzero $f \in I^{\det}_{n,m,r}$, the determinant of a $t \times t$ matrix of variables with $t = Θ(r^{1/3})$ is approximately computed by a constant-depth, polynomial-size $f$-oracle algebraic circuit, in the sense that the determinant lies in the border of such circuits. An analogous result was also obtained for Pfaffians in the same paper. In this work, we deborder the result of Andrews and Forbes by showing that when $f$ has polynomial degree, the determinant is in fact exactly computed by a constant-depth, polynomial-size $f$-oracle algebraic circuit. We further establish an analogous result for Pfaffian ideals. Our results are established using the isolation lemma, combined with a careful analysis of straightening-law expansions of polynomials in determinantal and Pfaffian ideals.
翻译:代数复杂度理论中的一个重要问题是理解多项式理想的复杂度(Grochow,EATCS公报131,2020)。Andrews与Forbes(STOC 2022)研究了由n×m矩阵的r×r子式生成的行列式理想$I^{\det}_{n,m,r}$。在特征为零或充分大特征的域上,他们证明对于任意非零多项式$f \in I^{\det}_{n,m,r}$,变量矩阵的行列式(其中矩阵维度$t = Θ(r^{1/3})$)可被常数深度、多项式规模的$f$-预言代数电路近似计算,即该行列式位于此类电路的边界闭包中。同一论文中对Pfaffian也得到了类似结果。本工作中,我们通过去边界化改进了Andrews与Forbes的结果:当$f$具有多项式次数时,行列式实际上可被常数深度、多项式规模的$f$-预言代数电路精确计算。我们进一步为Pfaffian理想建立了类似结论。这些结果的证明结合了隔离引理,以及对行列式理想与Pfaffian理想中多项式直化律展开式的精细分析。