One important question in algebraic complexity is understanding the complexity of polynomial ideals (Grochow, Bulletin of EATCS 131, 2020). Andrews and Forbes (STOC 2022) studied the determinantal ideals $I^{\det}_{n,m,r}$ generated by the $r\times r$ minors of $n\times m$ matrices. Over fields of characteristic zero or of sufficiently large characteristic, they showed that for any nonzero $f \in I^{\det}_{n,m,r}$, the determinant of a $t \times t$ matrix of variables with $t = Θ(r^{1/3})$ is approximately computed by a constant-depth, polynomial-size $f$-oracle algebraic circuit, in the sense that the determinant lies in the border of such circuits. An analogous result was also obtained for Pfaffians in the same paper. In this work, we deborder the result of Andrews and Forbes by showing that when $f$ has polynomial degree, the determinant is in fact exactly computed by a constant-depth, polynomial-size $f$-oracle algebraic circuit. We further establish an analogous result for Pfaffian ideals. Our results are established using the isolation lemma, combined with a careful analysis of straightening-law expansions of polynomials in determinantal and Pfaffian ideals.


翻译:代数复杂度理论中的一个重要问题是理解多项式理想的复杂度(Grochow,EATCS公报131,2020)。Andrews与Forbes(STOC 2022)研究了由n×m矩阵的r×r子式生成的行列式理想$I^{\det}_{n,m,r}$。在特征为零或充分大特征的域上,他们证明对于任意非零多项式$f \in I^{\det}_{n,m,r}$,变量矩阵的行列式(其中矩阵维度$t = Θ(r^{1/3})$)可被常数深度、多项式规模的$f$-预言代数电路近似计算,即该行列式位于此类电路的边界闭包中。同一论文中对Pfaffian也得到了类似结果。本工作中,我们通过去边界化改进了Andrews与Forbes的结果:当$f$具有多项式次数时,行列式实际上可被常数深度、多项式规模的$f$-预言代数电路精确计算。我们进一步为Pfaffian理想建立了类似结论。这些结果的证明结合了隔离引理,以及对行列式理想与Pfaffian理想中多项式直化律展开式的精细分析。

0
下载
关闭预览

相关内容

STOC论文的典型但非排他性的主题包括基础领域,如算法和数据结构、计算复杂性、并行和分布式算法、量子计算、连续和离散优化、计算中的随机性、近似算法、组合数学和算法图论,密码学,计算几何,代数计算,逻辑计算应用,算法编码理论。典型的主题还包括计算和基础方面的领域,如机器学习,经济学,公平性,隐私,网络,数据管理和生物学。STOC鼓励那些拓宽计算理论研究范围,或提出可从理论调查和分析中受益的重要问题的论文。官网链接:http://acm-stoc.org/stoc2019/
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
33+阅读 · 2021年6月24日
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员