Memristors have uses as artificial synapses and perform well in this role in simulations with artificial spiking neurons. Our experiments show that memristor networks natively spike and can exhibit emergent oscillations and bursting spikes. Networks of near-ideal memristors exhibit behaviour similar to a single memristor and combine in circuits like resistors do. Spiking is more likely when filamentary memristors are used or the circuits have a higher degree of compositional complexity (i.e. a larger number of anti-series or anti-parallel interactions). 3-memristor circuits with the same memristor polarity (low compositional complexity) are stabilised and do not show spiking behaviour. 3-memristor circuits with anti-series and/or anti-parallel compositions show richer and more complex dynamics than 2-memristor spiking circuits. We show that the complexity of these dynamics can be quantified by calculating (using partial auto-correlation functions) the minimum order auto-regression function that could fit it. We propose that these oscillations and spikes may be similar phenomena to brainwaves and neural spike trains and suggest that these behaviours can be used to perform neuromorphic computation.
翻译:模拟器可以用作人工突触,并在与人工突突神经元的模拟中很好地发挥这一作用。 我们的实验显示, 模拟器网络本源性地激增, 并能够显示突发的振动和爆裂性螺旋。 近理想的模拟器网络表现出类似于单一的模拟器的行为, 并在与抵抗器一样的电路中结合。 当使用丝状的模拟器或电路具有较高程度的构成复杂性( 即, 更多的反系列或反单极互动) 时, 喷射器网络就更可能出现。 3- 闪烁器网络以同样的中间神经极( 低结构复杂性) 进行稳定, 并且不会显示突发的振动行为。 3- 闪烁电路与反序列和( 或) 阻击器的构成相比, 更可能显示比 2 乳质的振动电路变电路更丰富和更加复杂的动态。 我们显示, 这些动态的复杂性可以通过计算( 使用部分的自动波或反平行互动功能) 来显示, 最起码的静态和血管变压的电路能功能可以显示。